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[* create a server handle to wait for RPC calls to the set_alarm func*/
svep = new RPC_svc( ACLKPRCG, ACLKVER, “netpath”);

/* register the RPC function and wait for RPC calls */
if (svep->run_func( ACLKFUNC, set_alarm )) ;

return 1; /* the server process should never get here */

}

The server program starts by creating an RPC_svc object to initiate the set_alarm RPC
function. The program number, version number, and procedure number of this set_alarm
RPC function are ACLKPROG, ACLKVER, and ACLKFUNC, respectively. The server calls
the RPC_svc::run function to wait for client RPC requests to arrive.

When a client RPC request arrives, the set_alarm RPC function is called. The
set_alarm function, in turn, calls the RPC_svc::getargs function to extract the RPC call-back
information. This information is stored in the argRec variable. After the RPC_svc::getargs
call succeeds, the server calls the RPC_svc::reply to send a dummy reply to the client. This
finishes the RPC call, and the client can now go on to do something else.

After the RPC_svc::reply call, the server forks a child process to deal with the client,
" and the parent (the parent process) returns to the polling loop to wait for other client RPC
requests.

The child process calls the alarm API to set up a SIGALRM signal to be sent to it after
the client-specified alarm clock period elapses. It also calls the signal API to catch the
SIGALRM signal when it is delivered to the child process. Finally, the child process calls the
pause API to suspend its execution until the SIGALRM signal arrives. :

When the SIGALRM signal is delivered fo the child process, the call_client function is
called. This function sets up an RPC_cls object to connect with the client RPC call-back
function and sends the remaining alarm clock time (which should be zero) as argument to the
client RPC function. After the RPC call completes, the function calls the exit function to ter-
minate the child process.

The client program for this example is aclk_cls.C:

#include <netconfig.h>
#include “aclock.h”
#include “RPC.h

#define CLNTPROGNUM 0x20000105
RPC_svc *svep = 0;
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/* client’'s RPC call-back function */
int callback( SVCXPRT* xtrp )
{
u_long timv;
/* get server’s alarm remaining time */
if (svcp->getargs( xtrp, (xdrproc_t)xdr_u_long, (caddr_t)&timv)
' 1=RPC_SUCCESS)
{

cerr << “client: get alarm time fails\n”;
return -1,

}

cerr << “client: alarm time left is: “ << timv << endl;

* send a dummy reply to server */

if (svep->reply(xtrp, (xdrproc__t)xdr_void, 0)!=RPC_SUCCESS) {
cerr << “client: send reply failed\n”;
return -2;

}

/* do other work, then terminates the client process */

exit(0);

}

/* register a call back with an RPC server */
int register_callback( char* local_host, char* svc_host, u_tong alarm_time)
{

/* tell remote server the process’s host name, prog no, vers. no,

func. no, and the alarm time

*/

struct arg_rec argRec;

argRec.hostname = local_host;

argRec.prognum = svcp->progno();

argRec.versnum = CLNTVERNUM;

argRec.funcnum = CLNTFUNCNUM;

argRec.atime = alarm_time;

/* setup a client object to connect to the RPC server */'
RPC_cls cint( svc_host, ACLKPROG, ACLKVER, “netpath”);
if ('cint.good()) return 1;

/* call the server's RPC function (set_alarm) */
if (cint.call( ACLKFUNC, (xdrproc_t)xdr_arg_rec, (caddr_t)&argRec
(xdrproc_t)xdr_void, (caddr_t)0 ) I=RPC_SUCCESS)
return 2;
cerr << “client: “ << getpid() <<“: RPC call done\n”;
return 0;
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/* client main function */
int main (int argc, char* argv(])

if (argc!=4), {
cerr << “usage: “ << argv[0] << “ <local-host> <svc-host> “
<< “<transport>\n";
return 1,

}

/* create a server object to receieve call back from a remote server */
if ({(svcp= new RPC_svc( CLNTPROGNUM, CLNTVERNUM, argv{3})))
return 2;

/* define the callback function */
svep->add_func( CLNTFUNCNUM, callback );

/* register the callback with a remote server */
if (register_callback( argv{1], argv(2], 10)) return 3;

/* do other work here .... */

svep->run(); /* wait for alarm to expire */
return O;

}

The client process begins by creating an RPC_svc object to register its call-back RPC
function, callback, with the rpcbind (via the svc_create API). The call-back function pro-
gram, version, and procedure numbers are CLNTPROGNUM, CLNTVERNUM, and CLNT-
FUNCNUM, respectively. After the RPC_svc object is created, the client calls the
register_callback function to inform the alarm server of the alarm clock period and the call-
back information. Upon return of the register_callback function, the client proceeds to do
other work. It then calls the RPC_svc::run function at the end to wait for the server call-back
to arrive.

The register_callback function creates an RPC_cls object to connect to the alarm server
RPC function. It calls the server RPC function and passes a record of data containing: (1) the
client’s host machine name; (2) the call-back function program, version, and procedure num-
bers; and (3) the alarm clock period. This information is needed by the server to call the client
RPC function when the alarm period expires.

The client’s callback RPC function is called by the alarm server when the alarm period
expires. The callback function calls the RPC_svc::getargs to extract the server argument (the
remaining alarm clock time). It then sends a dummy reply to the server via the
RPC._svc::reply function. Finally, the function calls exit to terminate the client process.
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The XDR conversion functions of the above program are contained in the ack_xdr.c:

#include “aclock.h”
bool_t xdr_name_t(register XDR *xdrs, name_t *objp)

{
register long *buf;
return (xdr_string(xdrs, objp, MAXNLEN)) ? FALSE : TRUE:

}

bool_t xdr_arg_rec(register XDR *xdrs, arg_rec *objp)

{

register long *buf;

it (!xdr_name_t( xdrs, &objp->hostname ))  return (FALSE);
if (!xdr_u_long( xdrs, &objp->prognum )) return (FALSE);
it ('xdr_u_long( xdrs, &objp->versnum )) return (FALSE);
it (Ixdr_u_long( xdrs, &objp->funcnum )) return (FALSE);
it (!xdr_u_long( xdrs, &objp->atime )) return (FALSE);
return (TRUE);

The XDR functions translate the client’s call-back information, as specified in a strucr
arg_rec record, which is sent to the alarm server in the set_time RPC call.

The above programs are compiled and run as shown below. It is assumed that the server
iI$ running on a machine called saturn, while the client process is running on a machine called
Sfruit:

On machine saturn:

saturn % CC -DSYSV4 -0 aclk_svc aclk_sve.C RPC.C aclk_xdr.c\
-Isocket -Insl
saturn % aclk_svc &

On machine fruit:

fruit%  CC -DSYSV4 -0 aclk_cls aclk_cls.C RPC.C aclk_xdr.c \
-Isocket -Ins|

fruit % aclk_cls fruit saturn netpath

client: 1567: RPC call done

client: alarm time left is: 0
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12.10 Transient RPC Program Number

In the above example, the client RPC function has a predefined program number, ver-
sion number, and procedure number. This restricts the client process in running more than
one process at any one time on the network. One solution to this restriction is to create differ-
ent versions of the client program, each with a different assigned RPC program number.
However, this makes it hard to maintain the programs. A better solution is for each client pro-
cess to generate a transient RPC program number at run time, so that multiple instances of the
client processes may be active concurrently on a LAN (the server can differentiate them by
their unique RPC program numbers). Note that the following discussion is based on the
UNIX System V release 4 version of RPC. Not all UNIX systems support the transient port
number generation method.

The RPC program numbers 0x40000000 -- OxSfffffff are reserved for. transient use.
This allows any process to dynamically contact the rpcbind daemon to reserve one or more of
these values as its RPC program number(s); as long as the number is not being used by other
processes,. When the process terminates, the transient RPC program numbers that it claimed
are made available again for use by other processes.

The RPC_svc::gen_progNum static function can be used to allocate a transient RPC
program number. This function calls the rpcb_set API, for each number in the 0x40000000
and OxSfffffff range, to query the rpchind daemon whether a number is currently assigned to
any process. The function stops at the first lowest available transient program number, and the
rpch_set registers that program number and the specified version number with the rpcbind.

The function prototype of the rpchb_set APl is:

#include <rpc/rpe.h>

bool_t rpcb_set (const u_long prognum, const u_long versnum,
const struct netconfig* netconf, const struct netbuf* addr);

The prognum and versnum arguments are the requested RPC program and version
numbers to be assigned to the calling process. The netconf argument contains the transport
information of the calling process. Finally, the addr argument is the network address of the
calling process.

The function returns TRUE if it succeeds, and the requested program and version num-
bers are registered with rpcbind for the process with the specified address and transport. This
function returns FALSE if it fails.

The netconf and addr arguments of the RPC_svc::gen_progNum are a bit tricky to get,
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particularly if a server handle is created via the svc_create API. However, if one uses the
sve_tli_create APl instead to create a server handle, the netconf and addr values of the server

Transient RPC Program Number

are readily available.

To accommodate the use of transient program numbers, the following overloaded

RPC_svc::RPC_svc constructor function can be added to the RPC_svc class:

RPC_svc( int fd, char* transport, u_long progno, u_long versno )

{

b

In the above overloaded constructor function, the getnetconfigent function, is called to
return a pointer to a struct netconf data record that contains the network transport information
for the given function argument. Once the transport handle contained in the nconf variable is
obtained, the svc_tli_create API is called to create a server handle and a default address for

rc =0; /* assume failure status */

struct netconfig *nconf = getnetconfigent(transport);
if (\nconf) {
cerr << “invalid transport: “ << transport << end|;
return;

}

/* create a server handle */
SVCXPRT *xprt =svc_tli_create( fd, nconf, 0, 0, 0);

if (Ixprt) {
cerr << “create server handie fails\n”;
return,
}
if (\progno) { /* generate a transient one */
progno = gen_progNum( versno, nconf, &xprt->xp_ltaddr);
nconf = 0; /* tell sve_reg don't talk to rpcbind */
}

if (sve_reg(xprt, progno, versno, dispatch, nconf)==FALSE)
cerr << “register prognum failed\n”;

else {
prgnum = progno, vernum = versno;
rc=1,

}

freenetconfigent( nconf );

the given transport. The netconf variable is freed via the freenetconfigent function.
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The function prototype of the svc_tli_creafe APl is:

#include <rpc/rpe.h>

SVCXPRT* svc_ti_create (const int fd, const struct netconfig* netconf,
const struct t_bind* baddr, const u_int sendsz, const u_int recvsz);

The fd argument is a file descriptor referencing a transport device file. If its value is
specified as RPC_ANYFD, a transport device file determined by the netconf argument is
used. The address assigned to the server is determined by the baddr argument if it is not
NULL; otherwise, a default address chosen by a given transport is used. The sendsz and
recvsz arguments specify the desired sending and receiving buffer size for the server handle.
If their values are zero, the default buffer sizes determined by the transport will be used.

The svc_tli_create API returns NULL if it fails; otherwise, it returns a server handle.

If the svc_tli_create succeeds and a given progno argument value is O, .the
RPC_svc::gen_progNum function is called to generate a transient program number. After
that, the svc_reg API is called to associate an RPC program number and version number with
their dispatch function.

The function prototype of the svc_reg APl is:

#include <rpc/rpc.h>

int  svc_reg (const SVCXPRT* xprt, const u_long prognum,
const u_long versnum, const void (*diaptch)(...),
const struct netconfig* netconf);

The xprt argument is a server handle. The prognum and versnum arguments are the
RPC program and version numbers associated with a dispatch function, as given in the dis-
patch argument. The netconf argument specifies a network transport that can be used to regis-
ter the RPC function and dispatch function with the rpcbind daemon. If the netconf argument
is NULL, no such registration is needed.

In the RPC_svc constructor function, the svc_reg is called with the netconf argument
set to zero (if the RPC_svc::gen_progNum has been called). This is because the
RPC_svc::gen_progNum function automatically registers the RPC function with the rpcbind
daemon.
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The svc_reg function returns FALSE if it fails; otherwise, it returns TRUE, and an RPC
server is set up successfully.

The aclk_cls.C program can be rewritten to use the overloaded RPC_svc::RPC_svc
constructor function, which creates a transient program number. The new aclk_cls2.C pro-
gram is:

#include <netconfig.h>

#include “aclock.h”

#include “RPC.h" '
#define CLNTPROGNUM 0x20000105
RPC_svc *svep = 0;

* client’s RPC cali-back function */
int callback( SVCXPRT* xtrp )
{
u_long timv;
/* get server’s alarm remaining time */
if (svep->getargs( xtrp, (xdrproc_t)xdr_u_long, (caddr_t)&timv)
I=RPC_SUCCESS) {
cerr << “client: get alarm time fails\n”;
return -1,
}

cerr << “client: alarm time left is: “ << timv << end|;

/* send a dummy reply to server */

if (svep->reply(xtrp, (xdrproc_t)xdr_void, 0)!=RPC_SUCCESS) {
cerr << “client: send reply failed\n”;
return -2;

}

/* do other work, then terminates the client process */

exit(0);

}

I* register a call back with an RPC server */
int register_callback( char* local_host, char* svc_host, u_long alarm_time) ‘
{

/* tell remote server the process's hostname, prog no, vers. no, func. no,

. and the alarm time

*/

struct arg_rec argRec;

argRec.hostname = local_host;

argRec.prognum = svcp->progno();

argRec.versnum = CLNTVERNUM;

argRec.funcnum = CLNTFUNCNUM,;
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argRec.atime = alarm_time;

/* setup a client object to connect to the RPC server */
RPC_cls cint( svc_host, ACLKPROG, ACLKVER, “netpath”);
if (fcint.good()) return 1;

/* call the server's RPC function (set_alarm) */
if (cint.call( ACLKFUNC, (xdrproc_t)xdr_arg_rec, (caddr_t)&argRec,
(xdrproc_t)xdr_void, (caddr_t)0 ) '=RPC_SUCCESS)
return 2; '

cerr << “client: “ << getpid() <<*: RPC call done\n”;
return O;

}

/* client main function */
int main (int argc, char* argv{])

{
if (argc'=4) {
cerr << “usage: “ << argv[0] << “ <local-host> <svc-host> “
<< “<transport>\n”;
return 1,
}

/* create a server object to receieve call back from a remote server */
if ({(svep= new RPC_svc( RPC_ANYFD, argv[3], 0, CLNTVERNUM )))

return 2;

/* define the callback function */
svep->add_func( CLNTFUNCNUM, callback ),

/* register the callback with a remote server */
if (register_callback( argv[1], argv[2], 10)) return 3;

/* do other work here .... */

svep->run(); /* wait for alarm to expire */
return O;

}

Notice that the only difference between the new aclk_cls.C and the one depicted in Sec-
tion 12.9 is on one line: the creation of the RPC_svc handle via the new operator in the main
function.

The program can be compiled and run as in Section 12.9. The output of the old and new
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client/server programs is the same.

12.11 RPC Services Using Inetd

RPC servers are commonly daemon processes that run continuously, waiting for RPC
calls from their clients. This has the disadvantage that system resources allocated for these
processes (e.g., the Process Table slots) cannot be used by other processes, zven when the
daemons are idle. To improve system resource utilization, port monitors such as inetd may be
used to monitor network addresses for RPC services, while the RPC servers are not run at all.
However, when an RPC request arrives, the port monitor spawns an RPC server to respond to
that request, and the server terminates itself after the service is performed. Thus, system
resources are allocated to an RPC server only for the duration when it is responding to a cli-
ent request.

Most commercial UNIX systems use inezd as the port monitor. inetd is started at system
boot, and it consults the /etc/inetd.conf file for network addresses to monitor. Specifically,
each entry of the /etc/inetd.conf file has the following syntax:

<service> <transport> <protocol> <wait> <uid> <program> <arg>

The various fields in the entry state that if a request for <service> arrives, inetd should exe-
cute <program> and supply <arg> as its argument. The effective user ID of the executed pro-
cess should be <uid>, and it uses <transport>/<protocol> to communicate with its client
process. The commonly uséd <transport> and corresponding <protocol> values are:

Transport Protocol
stream tcp
dgram udp

For socket-based services, the <wait> field should be specified as nowait for connec-
tion-based (tcp)-transport and wait for connectionless (udp) transport. For TLI-based ser-
vices, the <wait> field is commonly set as wair.

The port address for a <service> is defined in the /etc/services file as:
<service> <port>/<protocol>
For example, .given the following entry in a /etc/inetd.conf file:

login stream tcp nowait root /etc/in.rlogind in.rlcgind
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when a remote user attempts to login to the local host, inetd should execute the /etc/in.rlogind
program as root. The rlogin process will use TCP/IP transport. The port address that the rlo-
gin process uses is 513, as stated in the /etc/services file:

logir 513/tep

To instruct inetd to monitor a particular RPC request, the /etc/inetd.conf file should con-
tain an entry for the RPC server as;

<prog_num>/<vers_num>  <transport> <protocol> <wait>\
<uid> <program> <arg>

Here, <prog_num> and <vers_num>> are the RPC server’s program and version numbers. The
other fields can be the same as before for ONC-based RPC. However, in UNIX System V.4,
the <transport> may be #li if the RPC server handle is created based on TLI, and the <proto-
col> values may be rpc/tcp, rpc/udp, or rpc/*. The protocol value of rpc/* means that the
server may use any TLI-supported transport.

For example, the directory listing program as shown in Section 12.7.4 uses 0x200100
and 1 as the RPC program and version numbers. To make inetd support the service, the fol-
lowing entry should be added to the /etc/inetd.conf file (here the executable file of the RPC
server is assumed to be /proj/scan_svc3):

For ONC:

# 536871168 is same as 0x20000100
536871168/1 stream tcp wait  root /proj/scan_svc3 scan_svc3

For System V.4:
536871168/1 ti rpc/* wait root  /proj/scan_svc3 scan_svc3

In addition to configuring inetd, the RPC server should create its RPC_svc (the
RPC_svc class is described in Section 12.5) handle using the constructor:

RPC_svc::RPC_svc( int fd, char* transport, unsigned long progno,
unsigned long versnumj;

Furthermore, the fd argument value for the RPC_svc constructor should be zero, as this is
assigned by inetd to correspond to the incoming RPC request. In the above example, the
directory listing server should create its RPC_svc handle as:
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RPC_svc *svep = new RPC_svc( 0, “tcp”, 0x20000100, 1 );

When the RPC_svc::RPC_svc constructor is called, it creates the RPC_svc handle
using the following RPC APIs:

For ONC:

* Call svcetep_create (for stream transport) or svcudp_create (for datagram transport)
to create a server handle

» Call svc_reg to register a dispatch function to be invoked when an RPC call arrives
For System V.4:

* Call getnetconfigent to obtain a struct netconfig object for the transport (tcp or udp)
desired

* Call svc_tli_create to create a server handle
* Call svc_reg to register a dispatch function to be invoked when an RPC call arrives

Readers who are interested in the detail calling sequence of the above APIs should con-
sult the RPC_svc constructor code as shown in Section 12.5.

The above works are all the necessary changes for using inetd to monitoring RPC ser-
vice requests. The rest of the server code is the same as if it were not using inetd. Further-
more, there are no change at all in the XDR functions and the client programs that make RPC
calls.

As the final example, the remote directory listing program shown in Section 12.7.4 is
rewritten below so that the server uses inetd to monitor RPC requests on its behalf. The client
program (scan_cls2.C) and the XDR functions (scan_xdr.c) are the same as in Section 12.7.4
and, thus, are not depicted again. The modified server program is scan_svc3.C and is shown
below:

#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>
#include <string.h>
#include <malioc.h>
#include <errno.h>
#include <sys/stat.h>
#include <sy§/resource.h>
#include “scan2.h”
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#include “RPC.h"
static RPC_svc "svcp = 0;
static int work_in_progrss = 0;
static int ttl = 60; /* time-to-live: 60 seconds */
/* The RPC function */
int scandir( SVCXPRT* xtrp )
{
DIR *dirp;
struct dirent *d;
infolist nl, *nip;
struct stat statv;
static res res;
argPtr darg =0;
work_in_progress = 1; /* process not killed by alarm */

/* Get function argument from a client */
if (svep->getargs( xtrp, (xdrproc_t)yxdr_argPtr,
(caddr_t)&darg)!l=RPC_SUCCESS)
return -1;

/* start scaning the requested directory */

if ({(dirp = opendir(darg->dir_name)))  {
res.errno = errno;
(void)svcp->reply(xtrp, (xdrproc_t)xdr_res, (caddr_t)&res);
return -2;

}

/* free memoryallocated from a previous RPC call */
xdr_free((xdrproc_t)xdr_res, (char*)&res);

/* store files’ informaton to res as the return values */
nlp = &res.res_u.list;
while (d=readdir(dirp)) {
nl = *nlp = (infolist)malloc(sizeof(struct dirinfo));
nl->name = strdup(d->d_name);
nlp = &nl->next;
if (darg->Iflag) {
char pathnm[256];
sprintf(pathnm,"%s/%s" darg->dir_name,d->d_name);
if (!stat(pathnm,&statv))  {
nl->uid = statv.st_uid;
nl->modtime = statv.st_mtime;

}
}
}
*nip = 0,
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res.errno = 0,
closedir(dirp);

./* Send directory listing to client */
int  rc = svcp->reply(xtrp, (xdrproc_t)xdr_res,(caddr_t)&res);
work_in_progess = 0; /* process can be killed by alarm */
return rc;

}

/* signal handling routine */

static void done ( int signo )

{
if ('work_in_progress) exit(0);
signal( SIGALRM, (void(*)(int)) done );
alarm( ttl );

}

int main(int argc, char* argv(})
{
struct rlimit ris;
switch (fork()) {
case 0: break;
case -1: perror( “fork”);
default:  réturn errno;

}

/* close all 1/O streams, except descriptor 0 */
rls.rlim_max = 0;
getrlimit(RLIMIT_NOFILE, &rls);
if (rls.rlim_max == 0) {
fprintf( fp, “getrlimit failed\n”);
return 1;

}
for (inti = 1;i < rs.rlim_max; i++) (void) close(i);

/* all output messages redirected to the system console */
int fd = open(“/dev/console”, 2);

(void) dup2(fd, 1);

(void) dup2(fd, 2);

setsid();

/* Now create the RPC server handle */
svep = new RPC_svc( 0, “tcp”, SCANPROG, SCANVER );
if (Isvep Il 'svep->good()) {

fprintf( stderr, “create RPC_svc object failed\n” );
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exit( 1);
}

svep->add_proc( SCANDIR, scandir );

/* terminate daemon after alive for 60 seconds */
signal( SIGALRM, done );
alarm( ttl );

svep->run();

return O;

}

In the above program. the server creates an RPC_svc handle for the file descriptor zero
and the transport used is tcp. It registers the scandir function to be callable by clients, then
sets up the SIGALRM signal to be sent to itself. The latter is done because inetd does not
spawn a new process for a service request if there is already a server process running (this is
done to avoid creating too many redundant processes). Thus, it is common practice for a
server spawned by inetd to remain blocked for a set period of time after it has serviced a
request, so that it may catch the next service call that comes shortly.

After registering the done function as the signal handler for SIGALRM, the server pro-
gram calls RPC_svc::run. This causes the scandir function to be called immediate, as there is
already a pending request. When the scandir function returns, the server is blocked in the
RPC_svc::run function waiting for the next RPC call. The server lives, at most, 60 seconds,
unless a new RPC call arrives before the time is up. If that happens the done function will
reset the alarm clock so that the process can run for another 60 seconds. The
work_in_progress global variable is set whenever the scandir function is called, and it i$ reset
when the scandir function returns. This variable is used by the done function to decide
whether to terminate the process or to restart the alarm clock.

The client and server programs are compiled on a UNIX System V.4 system, as follows
(on ONC systems, compile them without the -DSYSV4 option):

% CC -c scan2_xdr.c RPC.C
% CC -DSYSV4 -o scan_svc3 scan_sve3.C scan2_xdr.o \
RPC.o -Isocket -Insl
°% CC -DSYSV4 -0 scan_cls2 scan_cls2.C scan2_xdr.o RPC.0\
-Isocket -Insl
The /etc/inetd.conf file entry for the scan_svc3 server is (using System V.4 format):

536871 168/1tli rpc/* wait  root  /proj/scan_svc3 scan_svc3
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Finally, the sample run of the client and server programs is shown below. The server
program is resided on a machine called fruit, while the client program may be run on any
machine that is connected to fruit. Only the client program needs to be started manually,
while the server program is executed by inetd:

%  scan_cls2 fruit .

...scan_cls2.C

...scan_svc2.C

...RPC.C

...RPC.h

...scan2_xdr.c

...scan2.h

...scan_svc2

...scan_cls2

Prog 536871168 (version 1) is alive

| 12.12 Summary

This chapter describes three methods of creating RPC programs: (1) using the system-
supplied RPC library functions; (2) using the rpcgen compiler to create custom RPC function
and client main programs; and (3) using the RPC classes to create fuil custom client and
server RPC programs.

Of the three approaches, the last one, which uses RPC classes, is most flexible, in that
users have complete control over the content of the client and server programs, and they can
also control the transport properties used by their applications. Furthermore, the RPC classes
encapsulate most of the low-level RPC API interface. Thus, programming effort is not much
more time-consuming than when using the rpcgen compiler.

Finally, numerous examples are depicted in the chapter to illustrate various RPC pro-
gramming techniques. These include RPC broadcast, asynchronous call-backs (from clients
to servers), authentication, transient RPC program number generation, and using inetd to
monitor RPC requests. Users may use these example programs as starting points and may
modify them to create their own RPC-based applications.
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Multithreaded Programming

A thread is a piece of program code executed in a serial fashion. Most UNIX
applications are single-threaded programs, as each of them executes only one piece of pro-
gram code at any one time. For example, a single-threaded process may get a command from
a user, execute the command, display the results to the user, then wait for a next command.
While the process is executing a command, the user must wait for it to finish before entering
subsequent commands.

A multithreaded program, on the other hand, can have several pieces of its code exe-
cuted “concurrently” at any one time. Each piece of the code is executed by one thread of
control. Thus, in the previous example, if the process were multithreaded, the user could
enter commands immediately, one after the other, and the process executed all commands
concurrently.

Multithreaded programming can be used to develop concurrent applications. These
applications can be run on any multiprocessor systems and make good use of hardware
resources. Specifically, if a multithreaded application runs on a system with M processors,
each of its threads may be run on a separate processor simultaneously. Thus, the performance
of the application may be improved by N times, where N is the maximum number of proces-
sors available at any one time, and N is less than or equal to M.

If a multithreaded application is run on a uniprocessor system, its performance may
still be improved. For example, if one of its threads is blocked in a system call (e.g., waiting
for data to be transferred to a tape device), another thread can be run on the processor right
away. Thus, the overall execution time of the application is reduced.
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In addition to the above benefits. multithreaded programming is also a good compli-
ment to object-oriented programming. This is because each object-oriented application con-
sists of a collection of objects interacting with each other to perform tasks. Each of these
objects is an independent entity and can be executed by a thread and run in parallel with other
objects. This results in significantly improvement in performance for these applications. For
example, in a multithreaded, object-oriented, window system, each menu, button, text field,
and scrolled window may be executed by a thread. Thus, any of these window objects may be
activated, one right after the other, without waiting for other objects to finish their execu-
tion.This makes the entire GUT application more responsive (“interactive”) to users than its
single-threaded counterpart.

Threads differ from child processes created by the fork API in the following ways:

* Threads may be managed by either user-level library functions or the operating sys-
tem kernel. Child processes as created by the fork system call are managed by the
operating system kernel. In general, threads is more efficient, and require much less
kernel attention, to create and manage than do child processes

* All threads in a process share the same data and code segments. A child process has
its own copy of virtual address space that is separate from its parent process. Thus,
threads use much less system resources ihan do child processes

* If a thread calls the exit or exec function, it terminates all the threads in the same
process. If a child process calls the exir or exec function, its parent process is not
affected »

* If a thread modifies a global variable in a process, the changes are visible to other
threads in the same process. Thus, some synchronization methods are needed for
threads accessing shared data. This problem does not exist between child and parent
processes

All in all, the benefits of using multithreaded programming are:

* Itimproves process throughput and responsiveness to users

* Itallows a process to make use of any available multiprocessor hardware on any sys-
tem it is run on

* It allows programmers to structure their code into independently executable units
and maximize concurrency

* Threads reduce the need to use fork to create child processes, thus improving each
process performance (less context switching). Also, less kernel involvement is
needed in managing their execution

* Itis the natural choice for multiprocessing, object-oriented, applications to enhance
their performance
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The drawback of multithreaded programming is users must be careful in designing
thread synchronization in each program. This is to ensure that threads do not accidentally
mis-read/write shared data or destroy their process via the exit or exec system call.

Multithreaded programming has been in development since the mid-1980s. Different
versions of multithreaded programming interfaces were offered by different UNIX vendors.
The POSIX committee has developed a set of multithreaded APIs, which is now part of the
POSIX.lc standard. This chapter describes both the Sun Microsystems Solaris’ 2.x and
POSIX1.c multithreaded APIs, with emphasis on the Sun APIs. The Sun multithreaded APIs
are described because the POSIX.1c standard is new and not many UNIX vendors are sup-
porting it yet. On the other hand, the Sun multithreaded APIs have been available for applica-
tion programmers for quite some time. Furthermore, the Sun multithreaded APIs closely
resemblance those of the POSIX.1c APIs, and there is almost a one-to-one correspondence of
the Sun multithreaded APIs to the POSIX.1c APIs. Thus applications which are based on the
Sun multithreaded APIs can be easily converted to the POSIX.Ic standard.

13.1 Thread Structure and Uses

A thread consists of the following data structures:

+ Athread ID

* A run-time stack

* A set of registers (e.g., program counter and stack pointer)
* A signal mask

A schedule priority

A thread-specific storage

A thread is created by the thr_create function (or the pthread_create in POSIX.1c).
Each thread is assigned a thread ID that is unique among all threads in a process. A newly
created thread inherits the process signal mask and is assigned a run-time stack, a schedule
priority, and a set of registers. The run-time stack and registers (program counter and stack
pointer) enable the thread to run independently of other threads. The schedule priority is used
to schedule the execution of threads. A tir= “d may change its inherited signal mask and allo-
cate dynamic storage to store its own private data.

When a thread is created, it is assigned a function to execute. The thread terminates
when that assigned function returns or when the thread calls the thr_exit (pthread_exit-in
POSIX.1c) function. When the first thread is created in a process, two threads are actually
created: One to execute a specified function and the other to carry on the executign of the pro-
cess. The latter thread terminates when the main function returns or when it calls the thr_exit
function.
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All threads in a process share the same data and code segments. If a thread writes data
to global variables in the process, those changes are seen by other threads immediately. Fur-
thermore, if a thread calls the exit or exec API, the containing process and all its threads are
terminated. Thus, a terminating thread that does not want to destroy its containing process
should call the thr_exit function instead.

A thread can change its gignal mask via the thr_sigsetmask (pthread_sigmask in
POSIX.1c) function. If a signal is delivered to a process, then any thread which has not
masked the signal will receive it. A thread can send signals to other threads in the same pro-
cess via the thr_kill (pthread_kiil in POSIX.1c) function, but it cannot send signals to specific
threads in a different process, as thread IDs are not unique among different processes. A
thread may use the signal or sigaction API to set up per-thread signal handling.

A thread is assigned an integer thread schedule priority number. The larger the priority
number the more frequently a thread is scheduled to run. A thread schedule priority number
can be inquired and changed by the thr _getprio  and  thr_setprio
(pthread_attr_getschedparam and pthread_attr_setschedparam in POSIX.Ic) functions,
respectively. In addition to these, a thread can deliberately yield its execution to other threads
of the same priority via the thr_yield (sched_yield in POSIX. 1c) function. Moreover, a thread
can wait for the termination of another thread and get its exit status code with the thr -_join
(pthread_join in POSIX.1c) function.

Note that in Sun a thread can suspend and resume execution of another thread via the
thr_suspend and thr_continue functions. Furthermore, if a function is executed by multiple
threads and uses static or global variables to which Jata is assigned and used on a per-thread
basis, it needs to create thread-specific Storage to store these actual data for each thread. A
thread-specific storage is allocated via the thr_keycreate, thr_setspecific and thr_getspecific
functions.

13.2 Threads and Lightweight Processes

The Sun thread library functions create objects called lightweight processes (LWPs),
which are scheduled by the kernel for execution. LWPs are like virtual processors in that the
thread library functions schedule threads in a process to be bound to LWPs and be executed.
If a thread bound to an LWP gets suspended (e.g., via the thr_yield or thr_suspend function),
the LWP is assigned to bind to another thread and executes that thread’s function. If an LWP
makes a system call on behalf of a thread, it remains bound to that thread until the system call
returns. If all LWPs are bound to threads and are blocked at system calls, the thread library
functions create new LWPs to bind unbound threads that are waiting for execution. This
ensures that a process is constantly executing. Finally, if there are more LWPs than threads
existing in a process, the thread library functions remove idle LWPs to conserve system
resources,
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Most threads are unbound and can be scheduled to bind to any available LWP. How-
ever, a process may create one or more threads that are permanently bound to LWPs. These
are called bound threads. They are used primarily if they need:

* To be scheduled by the kernel for real-time processing
* To have their own alternate signal stacks
» To have their own alarms and timer

The relationships of threads, LWPs, and hardware processors are depicted in Figure
13.1.

Process 123 Process 6231 Process 251

A IRE RSN
o

333
b

kernel

hardware

Legend:
\ unbound hardware
O -LwpP § thread - &?ggg :; " processor

Figure 13.1 Threads, LWPs, and hardware processor scheduling relationship

In Figure 13-1, the process 123 has two unbound threads that are scheduled on two
LWPs. The process 6231 has three unbound threads that are scheduled on two LWPs and one
bound thread that is executed by another LWP. The process 251 has four unbound threads that
are scheduled on one LWP. The unbound threads on each process are scheduled by the thread
library functions to be bound and run on LWPs in that process. The LWPs of all processes
are, in turn, scheduled by the kernel to run on the three existing hardware processors.

In POSIX.Ic, threads have an attribute known as scheduling contention scope. If a
thread contention scope attribute is set to PTHREAD_SCOPE_PROCESS, the thread is man-
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aged by user-level library functions and is an “unbound” thread. All threads with this same
attribute share processor resources that are available to their containing process. On the other
hand, if a thread contention scope attribute is set to PTHREAD_SCOPE_SYSTEM, then the
thread is managed by the operating system kernel and is considered “bound”. POSIX.1c does
not specify how a “bound” thread should be handled by the kernel.

13.3 Sun Thread APIs

This section describes only the Sun thread APIs. The POSIX.Ic thread APIs are
described in the Section 13.4. This is done so as to avoid confusing readers of the two differ-
ent sets of APIs. The various sub-sections in Section 13.4 list the corresponding APIs
between Sun to the POSIX.lc standard. These can be used for converting multithreaded
applications from Sun to the POSIX. ¢ standard.

To use the Sun thread APIs, users should do the following:

* Include the <thread.h> header in their programs

* Compile and link their programs with the -lthread option. If the -IC option is speci-
fied also, then the -ithread option should be specified before the -IC switch. For
example, the following compiles a multithreaded C++ program call x.C:

% CC x.C -0 x -lthread -IC

Unless otherwise stated, most of the thread APIs depicted below return a 0 value if they
succeed or a -1 value if they fail. In case they fail, perror may be called to print error diagnos-
tic messages.

13.3.1 thr_create

The thr_create function prototype is:

#include <thread.h>
int thr_create (void* stackp, size_t stack_size, void* (*funcp)(void*),
void* argp, long flags, thread_t* tid_p);

The function creates a new thread to execute a function whose address is given in the
JSuncp argument. The function specified in funcp should accept one void*-typed input argu-
ment and return a void* data. The actual argument to be passed to the Sfuncp function, when
the new thread starts executing, is specifiec. in the argp argument.
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The stackp and stack_size arguments contain the address of a user-defined memory
region and its size in number of bytes, respectively. This memory is used as the new thread
run-time stack. If the stackp value is NULL, the function allocates a stack region of
stack_size bytes. If the stack_size value is 0, the function uses a system default value that is
one megabyte of virtual memory. Users rarely need to supply their own memory region for a
thread stack. Thus, the normal values to stackp and stack_size arguments are NULL and zero,
respectively.

In addition to the above, the flags argument value may be zero, meaning that no special
attributes are assigned to the new thread. On the other hand, the flags value may consist of
one or more of the following bit-flags:

flags value Meaning

THR_DETACHED Creates a detached thread. This means that when
the thread terminates, all its resources and assigned
thread ID can be reused for another thread. No
thread should wait for it (via the thr_join function)

THR_SUSPENDED Suspends the execution of the new thread until
another thread calls the thr_continue function to
enable it to execute

THR_BOUND Creates a permanently bound thread
THR_NEW_LWP Creates a new LWP along with the new thread
THR_DAEMON Makes the new thread a daemon thread. Normally

a multithreaded process terminates when all its
threads are terminated. However, if the process
contains one or more daemon threads, the process
terminates immediately when all nondaemon
threads are terminated.

The new thread ID is returned via the rid_p argument. If the actual value of the rid_p
argument is assigned NULL, no thread ID is returned. The thread ID data type is thread_t.

The thr_create function may fail if there is not enough system memory to create a new
thread, the stackp argument contains an invalid address, or the stack_size argument value is
nonzero and less than the system-imposed minimum limit. The system-imposed minimum
stack size limit for a thread is obtained from the thr_min_stack function:

size_t thr_min_stack ( void );
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A thread can find out its thread ID via the thr_self function:

thread_t thr_self (void);

The following sampie code creates a new detached and bound thread to execute a func-
tion called do_it. The argument passed to do_it d is the address of the pint variable. The new
thread’s ID is assigned to the tid variable, and its stack is allocated by the function with the
system default size:

extern void* do_it (void* ptr);
int *pint;
thread_t tid;
if (thr_create( 0, 0, do_it, (void*)&pint,
THR_DETACHECITHR_BOUND, &tid) < 0)
perror(“thr_create”);

13.3.2 thr_suspend, thr_continue

The function prototypes of the thr_suspend and thr_continue functions are:

#include <thread.h>

. int thr_suspend ( thread_t tid );
int thr_continue ( thread_t tid );

The thr_suspend function suspends the execution of a thread whose ID is designated by
the tid argument value.

The thr_continue function resumes the execution of a thread whose ID is designated by
the tid argument value.

These functions may fail if the tid value is invalid.

13.3.3  thr_exit, thr_join

The function prototypes of the thr_exit and thr _join functions are:
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#include <thread.h>
int thr_exit ( void* statusp);
int thr_join ( thread_t tid, thread_t* dead_tidp, void** statusp);

The thr_exit function terminates a thread. The actual argument value to the statusp
argument is the address of a static variable that contains the exit status code of the terminat-
ing thread. If no other thread is expected to retrieve the terminating thread exit status code
(e.g., the thread is detached), the statusp argument value may be specified as NULL.

The thr_join function is called to wait for the termination of a nondetached thread. If
the tid argument value is zero, the function waits for any thread to terminate. The dead_tidp
and statusp argument values are addresses of variables that hold the terminated thread’s ID
and exit status value, respectively. The actual values to these arguments may be NULL,
which means those data are unwanted.

The following example waits for all nondetached threads in a process to terminate, then
terminates the current thread:

status int *rc, rval=0;
thread_t tid;
while (Ithr_join(0, &tid, &rc))
cout << “thread: “ << (int)tid << , exits, re=" << (*rc) << endi;
thr_exit( (void*)&rval );

13.3.4 thr_sigsetmask, thr_kill

Each thread has its own signal mask which is inherited from its creating thread. A
thread may modify its signal mask via the thr_sigsetmask AP1. When a signal is delivered to
a multithreaded process, a thread in that process which has the signal unblocked will receive
the signal. If there are multiple threads in the process with the signal unblocked, the system
will arbitrarily pick any one of them as the target for the signal. Thus to simplify the imple-
mentation of multithreaded programs, it is recommended that a process elects a dedicated
thread to handle one or more signals for the entire process, while other threads in the same
process block those signals.

In addition to the above, a thread may also send a signal to another thread in the same
process via the thr_kill AP1. The thr_sigsetmask and thr_kill function prototypes are:
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#include <thread.h>
#include <signal.h>

int thr_sigsetmask ( int mode, sigset_t *sigsetp, sigset_t *oldsetp);
int thr_kill ( thread_t tid, int signum);

The thr_sigsetmask function sets the signal mask of a calling thread. The sigsetp argu-
ment contains one or more of the signal numbers applied to the calling thread. The mode
argument specifies how the signal(s) specified in the sigsetp argument is to be used. The pos-
sible values of the mode argument are declared in the <signal.h> header. These values and
their meanings are:

mode value Meaning

SIG_BLOCK Adds signals contained in the sigsetp argument to
the thread signal mask

SIG_UNBLOCK Removes signals contained in the sigsetp argument
from the thread signal mask

SIG_SETMASK Replaces the thread signal mask with the signal(s)

specified in the sigsetp argument
If the sigsetp argument value is NULL, the mode argument value is ignored.

The oldsetp argument value should be the address of a sigser_t*-typed variable return-
ing the old signal mask. If the oldsetp argument value is NULL, the old signal mask is
ignored.

The thr_kill function sends the signal as given in the signum argument to a thread

whose ID is given by the tid argument. The sending and receiving threads must be in the
same process.

The following example adds the SIGINT signal to a thread signal mask, then sends the
SIGTERM signal to a thread whose ID is 15:

sigset_t set, oldset;

sigemptyset( &set );

sigaddset( &set, SIGINT );

if (thr_setsigmask( SIG_BLOCK, &set, &oldset)) perror(“thr_sigsetmask”);
if (thr_kill((thread_t)15, SIGTERM)) perror(“thr_kill");
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13.3.5 thr_setprio, thr_getprio, thr_yield

The prototypes of the thr_setprio, thr_getprio and thr_yield functions are:

#include <thread.h>

int thr_setprio ( thread_t tid, int prio);
int thr_getprio ( thread_t tid, int* priop);
void thr_yield ( void );

The thr_setprio function sets the scheduling priority of a thread, as designated by the
tid argument, to the prio value. Threads with higher priority values are scheduled more often
than are those with lower values.

The thr_getprio function returns a thread’s current priority value via the priop argu-
ment. The thread is designated by the tid argument.

The thr_yield function is called by a thread to yield its execution to other threads with
the same priority. This function always succeeds and does not return any value.

Thread scheduling is done via thread library functions, not by the kernel. Threads are
scheduled to bind to LWPs, which, in turn, are scheduled by the kernel to be executed on a
hardware processor.

13.3.6 thr_setconcurrency, thr_getconcurrency

The function prototypes of the thr_setconcurrency ana thr_getconcurrency functions

are:
#include <thread.h>
int thr_setconcurrency ( int amount );
int thr_getconcurrency ( void ),

The thr_setconcurrency function specifies the minimum number of LWPs that should
be kept in a process. This ensures that a minimum number of threads are executing concur-
rently at any time. Note that the system takes the amount argument value as a hint, but it hon-
ors this concurrency request based on the availability of system resources.

The thr_getconcurency function returns the current concurrency level of a process.
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13.3.7  Multithreaded Program Example

The following program is a rewrite of the RPC-based client and server programs shown
in Section 12.5 of Chapter 12. The client program gets a message string from a user, issues an
RPC call to the server printmsg function, which prints the message on the server system con-
sole.

The changes made in this version are in the client program (msg_cls.C) only: The client
repeatedly prompts a user for a server host name and a message. For each host name and
message data received from the user, the client process calls a function to allocate a dynamic
memory region to hold the data. It then creates a thread to make an RPC call to a server run-
ning on the specified host, and requests that the user message be printed on the server system
console.

The new msg_cls2.C client program is:

#include <thread.h>
#include <signal.h>
#include “msg2.h”
#include “RPC.h"

/* Record to hold one host name and message data for one thread */
typedef struct
{

char  *host;
char  "msg;
} MSGREC;

#define MAX_THREAD 200
thread_t thread_listf MAX_THREAD }; /I stores all threads’ IDs

/* Function executed by a thread to send a message */
void* send_msg( void* ptr)
{

int res,

MSGREC *pRec = (MSGREC*)ptr;

/* Set thread'’s signal mask to everything except SIGHUP */

sigset_t setv;

sigfillset(&setv);

sigdelset(&setv, SIGHUP);

if (thr_sigsetmask(SIG_SETMASK &setv,0)) perror(“thr_setsigmask”);

/* Create a client handle to communicate with a host */
RPC_cls cl( pRec->host, MSGPROG, MSGVER, “netpath”);

532



Chap. 13. Sun Thread APls
if (Icl.good()) thr_exit( &res');

/* Call the remote host to print the message to its system console */
(void)cl.cali( PRINTMSG, (xdrproc_t)xdr_string, (caddr_t)&(pRec->msg),
(xdrproc_t)xdr_int, (caddr_t)&res);

/* Delete dynamic memory */
delete pRec->msg;

delete pRec->host;

delete pRec;

/* Check RPC function execution status */

if (res!=0) cerr << “cint: call printmsg fails\n”;
int *rcp = new int(res);

thr_exit( rcp );

return O;

)

/* Function to create a thread for a user message */
int add_thread( int& num_thread )
{

char host[60}, msg[256];

thread_t tid;

int res;

/* Get remote host name and message from a user */

cin >> host >> msg;

if (cin.eof()) return RPC_FAILED; /* normal return*/

if ('cin.good()) { /* /O error detected */
perror(“cin”);
return RPC_FAILED;

}

/* Create dynamic memory for message text and host name */
MSGREC *pRec = new MSGREC;

pRec->host = new char[strien(host)+1];

pRec->msg = new char{strlen(msg)+1];
strcpy(pRec->host,host);

strcpy(pRec->msg,msg);

/* Create a suspended thread to process the message */

if (thr_create( 0, 0, send_msg, pRec, THR_SUSPENDED, &tid )) {
perror(“thr_create”);
return RPC_FAILED;
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else if (num_thread>= MAX_THREAD) {
cerr << “Too many threads created/\n”;
return RPC_FAILED:
}
else { /* Create a thread successfully */
thread_listlnum_thread++] = tid;
cout << “Thread: " << (int)tid << “ created for msg: "
<< msg << “[* << host << “P'\n";
}

return RPC_SUCCESS;
}

/* Client main function */
int main(int argc, char* argv())

{
int num_thread=0;
thread_t tid;
int *res;

/* Set concurrency level */
if (thr_setconcurrency(5)) perror(“thr_setoncurrency”);
cout  <<"No.LPWs:" << thr_getconcurrency() << endl!;

/* Create a thread to send each mesg input by a user */
while (add_thread(num_thread)::RPC_SUCCESS) ;

/* Set each thread'’s priority and launch it */
for (int i=0; i < num_thread; i++)
{
thr_setprio(thread_list[i,i);
thr_continue(thread_list[i]);

}

/* Wait for every thread to terminate */
while (thr_join(0,&tid,(void**)&res))
{

cerr << “thread: “ << (int)tid << *, exited. re=" << (*res) << endl;
delete res;

}

/* Terminate the main tread */
thr_exit(0);
return 0;
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In the above program, the client process starts up by calling the thr_setconcurrency
function to set the number of available LWPs to five. This specifies that at least five threads
can run concurrently at any one time. The process finds out the number of actual LWPs cre-
ated via the thr_getconcurrency function and prints that information to the standard output.

The process next calls the add_thread function repeatedly until it returns a zero return
value. Each time the add_thread function is called, it gets a host name and a message from a
user via the standard input. If end-of-file or an input error occurs, the function returns a zero
value to main to indicate the end of user input. If the input data is retrieved successfully, the
add_thread function allocates a dynamic memory to store the user-specified host name and
message into a MSGREC-typed record. The function then calls the thr_create function to
create a thread to execute the send_msg function. The send_msg function input argument is
the address of 2 MSGREC-typed variable just allocated. The thread is created with a system-
allocated stack, and it is suspended immediately after being created. The newly created
thread's ID is stored in a global array thread_list, and the add_thread function returns a 1
value to main to indicate a successful execution status. If, however, the thread is not created
successfully or MAX_THREAD threads have already been created, the function returns a
zero value to main to signal the error.

After the add_thread function has created all the threads needed to handle all user input
data, the main function (the main thread) scans the thread_list array and sets the schedule pri-
ority of each thread. The thread ID is stored in the array with a value related to the thread’s
position (index) in the array. Thus, the first thread in the array has the lowest priority, the next
one has the second-lowest priority, and so on. The main function launches each suspended
thread to run via the rhr_continue function. After all this, the main function waits for each
thread to terminate and prints the thread ID and exit status code to the standard output.

Each thread launched executes the send_msg function. The thread first sets its signal
mask to include everything except the SIGHUP signal. It then creates an RPC client handle to
be connected to the printmsg server whose host name is given in the send_msg function input
argument. If the RPC client handle is created successfully, the thread calls the RPC _cls::call
function to send the user message to the printmsg server. This prints the message to the
server’s system console. Finally. the thread deletes the dynamic memory that stores the host
name and message. then creates a dynamic memory to store the return status value, and
returns this dynamic data to the main function via the thr_exit call. The reason that the exit
code is stored in a dynamic memory is because the send_msg function is executed by multi-
ple threads. and each thread must return its own status code. Thus, the return value cannot be
stored in an automatic or a static variable, but must be put in a dynamic variable that is unique
for each thread. ’

The printmsg server program (msg_svc2.C) and the RPC_cls class definition as speci-
fied in the RPC.h header are shown in Section 12.5 of Chapter 12. The new msg_cls2.C client
program is compiled as follows:
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%  CC -DSYSV4 msg_cls2.C -0 msg_cls2 -ithread -Insi

The -lthread and -Insl options tell the link editor to link the msg_cls2.0 object file with
the thread (libthread.so) and network (libnsl.so) libraries, respectively. The libthread.so
library contains all the thread API object codes, and the libnsl.so library contains the RPC-
related codes.

The sample run and output of the client program is shown below. The words in italic
are input data entered by a user from the standard input.

%  msg_cls2

No. LPWs: 5

fruit  happy_day

Thread: 4 created for msg: ‘happy_day [fruit]’
fruit  easter_sunday

Thread: 5 created for msg: ‘easter_sunday [fruit]’
fruit Good_bye

Thread: 6 created for msg: ‘Good_bye [fruit]
thread: 5, exited. rc=139424

thread: 6, exited. rc=139424

thread: 4, exited. rc=139424

°/0

The system console of the machine fruir shows the following for the above run:

server. ‘easter_sunday’
server: ‘Good_bye’
server: ‘happy_day’

13.4 POSIX.1¢c Thread APIs

This section describes the POSIX.1c thread APIs for basic thread manipulation. The
corresponding POSIX.1¢ and Sun thread APIs are:

Sun thread API POSIX.1c thread API
thr_create pthread_create
thr_self pthread_seif

thr_exit pthread_exit

thr_kill pthread_kill

thr_join pthread_join
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To use these APlIs, application program should include the <pthread.h> header which
declares all the POSIX.1c multithreaded function prototypes. Furthermore, if a program
manipulates threads scheduling priority, then the <sched.h> header should be included also.

Unless otherwise stated, most of the thread APIs depicted below return a O value if they
succeed, or a -1 value if they fail. In case they fail perror may be called to print error diagnos-
tic messages.

13.4.1 pthread_create

The pthread_create function prototype is:

#include <pthread.h>

int pthread_create ( pthread_t* tid_p, const pthread_attr_t* attr,
void* (*funcp)(void*), void* argp );

The API creates a new thread to execute a function whose address is given in the funcp
argument. The function specified in funcp should accept a void*-typed input argument and
return a void* data. The actual argument to be passed to the funcp function, when the new
thread starts execution, is specified in the argp argument.

The new thread ID is returned via the tid_p argument. If the actual value of the tid_p
argument is assigned NULL, then no thread ID is returned. The thread ID data type is
pthread_t.

The attr argument contains properties to be assigned to the newly created thread. The
attr argument value may be NULL, if the new thread is to use the system default property val-
ues, or it is the address of an attribute object. POSIX.Ic defines a set of APIs to create,
destroy, inquire or set attribute objects. An attribute object may be associated with multiple
threads, so that whenever an attribute object’s properties are updated, all threads associated
with that object will be affected by the changes. This is different from Sun threads where
properties are specified for each thread individually.

The pthread_attr_init and pthread_attr_destroy APIs creates and destroys, respec-
tively, an attribute object:

#include <pthread.h>
int pthread_attr_init ( pthread_attr_ t* attr_p );
int pthread_attr_destroy ( pthread_attr_ t* attr_p );
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Once an attribute object is created via the pthread_attr_init function, its properties may
be checked or set via the pthread_attr_get and pthread_attr_set APIs, respectively. The pos-
sible properties which may be contained in an attribute object and the associated APIs to
check and set them are:

" Property API to check API to set
Contention scope pthread_attr_getscope pthread_attr_setscope
Stack size pthread_attr_getstacksize pthread_attr_setstacksize
Stack address pthread_attr_getstackaddr pthread_attr_setstackaddr
Detach State pthread_attr_getdetachstate pthread_attr_setdetachstate
Schedule policy pthread_attr_getschedpolicy  pthread_attr_setschedpolicy

Schedule Parameters  pthread_attr_getschedparam  pthread_attr_setschedparam

All the above pthread_attr_get APls take two arguments: The first argument is the
pointer to an attribute object, and the second argument is the address of a variable to hold the
inquired property value. Similarly, all the above pthread_attr_set APIs also take two argu-
ments:The first argument is the pointer to an attribute object, and the second argument is
either a new property value or the pointer to a variable which holds the new property value.

The thread scheduling contention scope has been explained in Section 13.2. The possi-
ble values to set this property are PTHREAD_SCOPE_PROCESS or
PTHREAD_SCOPE_SYSTEM.

A thread detach state specifies if a thread is created detached or joinable. The possible
values for this property are PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE.

A thread scheduling policy specifies, among other things, the scheduling priority of a
thread. The second argument to the pthread_attr_getschedparam  and
pthread_attr_setschedparam APIs is the address of a struct sched_param-typed variable. In
this variable there is an integer-typed shced_priority field, which specifies the scheduling pri-
ority of any thread that owns this property.

Finally, a newly created thread’s run-time stack size and address may be set in a similar
fashion as the stack_size and stackp arguments to the thr_create call (see Section 13.3.1 ). The
difference here is that prthread_attr_setstacksize and pthread_attr_setstackaddr APIs are used
to set these properties for one or more threads.

The following sample code creates a new detached and bound thread with a scheduling
priority of five. The thread executes a function called do_it with an argument specified by the
pint variable. The new thread’s ID is assigned to the rid variable and its stack is allocated by
the function with the system default size:
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extern void* do_it (void* ptr);

int *pint;

pthread_t tid; °
pthread_attr_t attr, *attrPtr = &attr;
struct sched_param sched;

it (pthread_attr_init( attrPtr ) == -1) {
perror(“pthread_attr_init");

attrPtr = 0;
}
else {
pthread_attr_setdetachstate( attrPtr, PTHREAD_CREATE_DETACH);
pthread_attr_setscope( attrPtr, PTHREAD_SCOPE_SYSTEM);
if (pthread_attr_getschedparam(attrPtr,&sched)==0) {
sched.sched_priority = 5;
pthread_attr_setschedparam(attrPtr, &sched );
}
}

if (pthread_create( &tid, &attr, do_it, (void*)&pint ) == -1)
perror(“pthread_create”);

13.4.2 pthread_exit, pthread_detach,
pthread_join

The function prototypes of the pthread_exit, pthread_detach-and pthread_join func-
tions are:

#include <pthread.h>

int pthread_exit ( void* status );

int pthread_detach ( void* status );

int pthread_join ( pthread_t tid, void** statusp);

Both the pthread_exit and pthread_detach functions terminate a thread. The
pthread_exit function may be used by a non-detached thread, while the pthread_detach func-
tion is used by a detached thread. The actual argument value to the statusp argument is the
address of a static variable which contains the exit status code of the terminating thread. If no
other thread is expected to retrieve the terminating thread exit status code (e.g., the thread is
detached), then the statusp argument value may be specified as NULL.
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The pthread join function is called to wait for the termination of a non-detached thread
and returns the thread’s exit status value as passed via a pthread_exit call.

The following example waits for a non-detached threads to terminate, then terminates
the current thread:

status int *rc, rval=0;
thread_t tid;
if (\pthread_join(tid, &rc))
cout << “thread: “ << (int)tid << “, exits, rc=" << (*rc) << endl;
pthread_exit( (void*)&rval );

13.4.3 pthread_sigmask, pthread_kill

The prototypes of the pthread_sigmask and pthread_kill functions are:

#include <pthread.h>
#include <signal.h>

int pthread_sigmask ( int mode, sigset_t *sigsetp, sigset_t *oldsetp);
int pthread_kill ( pthread_t tid, int signum);

The pthread_sigmask function sets the signal mask of a calling thread. The sigsetp
argument contains one or more of the signal numbers to be applied to the calling thread. The
mode argument specifies how the signal(s) specified in the sigsetp argument is to be used.

The possible values of the mode argument, as declared in the <signal.h> header, and their
meanings are:

mode value Meaning

SIG_BLOCK Adds signals contained in the sigsetp argument to
the thread signal mask

SIG_UNBLOCK Removes signals contained in the sigsefp argument
from the thread signal mask

SIG_SETMASK Replaces the thread signal mask with the signal(s)

specified in the sigsetp argument

If the sigsetp argument value is NULL, the mode argument value is don’t-care.
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The oldsetp argument value should be the address of a sigset_t*-typed variable return-

ing the old signal mask. If the oldsetp argument value is NULL, then the old signal mask is
ignored.

The pthread_kill function sends a signal, as specified in the signum argument, to a
thread whose ID is given by the rid argument. The sending and receiving threads must be in
the same process.

The following example adds the SIGINT signal to a thread signal mask, then sends the
SIGTERM signal to a thread whose ID is 15:

sigset_t set, oldset;

sigemptyset( &set ),

sigaddset( &set, SIGINT );

if (pthread_setmask( SIG_BLOCK, &set ,&oldset ))
perror(“thr_sigsetmask”);

if (pthread_kill((thread_t)15, SIGTERM)) perror(“pthread_kill");

13.4.4  sched_yield

The function prototype of the sched_yield APl is:

#include <pthread.h>
int sched_yield ( void ),

The sched_yield function is called by a thread to yield its execution to other threads
with the same priority. This function returns O on success and -1 when fails. This API is the
POSIX.Ic counterpart to the Sun’s thr_yield APL.

13.5 Thread Synchronization Objects

Threads in a process share the same address space as the process. This means that glo-
bal and static variables in the process are accessible by all its threads. To ensure the correct
manipulation of these variables, threads must use some methods to synchronize their opera-
tions. Specifically, no thread should access a variable while its value is being changed by a
thread. Furthermore, no thread should change a variable value while o’her threads are reading
that variable value. '
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Thread synchronization is also needed when two or more threads are doing I/O opera-
tions on a common stream. For example, if two threads are writing to a stream simulta-
neously, it is unpredictable as to which data is output to that stream. Also, a similar problem
occurs when two threads are reading data from a stream simultaneously.

To solve these thread synchronization problems, Sun and POSIX.1c provide the follow-
ing objects to control thread operations on shared data and I/O streams in a process:

* Mutually exclusive locks (mutex locks)
* Condition variables
* Semaphores

Of the above objects, mutex locks are the most primitive and efficient to use. They are
used to serialize the access of shared data or execution of code segments.

Condition variables are the second most efficient method after mutex locks. They are
commonly used with mutex locks to control asynchronous access of shared data.

Semaphores are more complex than mutex locks and condition variables. They are used
in the similar manner as the UNIX System V and POSIX.1b semaphores.

In-addition to the above, Sun provides read-write locks as one more means for threads
synchronization. Specifically, read-write locks allow multiple read-access and single write-
access to any shared data. This capability is not provided by the aforementioned objects.
Read-write locks are commonly used to guard data that are read frequently, but changed
infrequently, by multiple threads.

Processes that use any one of these synchronization objects need to define storage for
them in their virtual address space. If these objects are defined in shared memory regions that
are accessible by multiple processes, they can be used to synchronize threads in these differ-
ent processes.

The following sections describe these objects in more detail.

13.5.1 Mutually Exclusive Locks (mutex Locks)

Mutex locks serialize the execution of threads, such that when multiple threads try to
acquire a mutex lock, only one of them can succeed and continue its execution. The other
threads are blocked until the lock is released (unlocked) by its owner thread. When a mutex
lock is released, it is unpredictable as to which pending thread is freed to acquire the lock.
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The following table lists the corresponding Sun and POSIX.1c APIs for mutex locks

manipulation:

Sun APIs
mutex_init
mutex_destroy
mutex_lock
mutex_trylock
mutex_unlock

POSIX.1c API
pthread_mutex_init
pthread_mutex_destroy
pthread_mutex_lock
pthread_mutex_trylock
pthread_mutex_unlock

The following two sub-sections describe these Sun and POSIX.1c mutex lock APIs in

more detail.

13.5.1.1 Sun Mutex Locks

The Sun thread library functions for mutex lock operations are:

Function
mutex_init
mutex_lock
mutex_unlock
mutex_trylock
mutex_destroy

Use

Initializes a mutex lock

Sets a lock on a mutex lock

Unlocks a mutex lock

Like mutex_lock, except it is nonblocking
Discards a mutex lock

The prototypes of these functions are:

#include <thread.h>

int mutex_init ( mutex_t *mutxp, int type, void* argp );
int mutex_lock( mutex_t* mutxp );

int mutex_trylock ( mutex_t* mutxp );

int mutex_unlock ( mutex_t* mutxp );

int mutex_destroy ( mutex_t* mutxp );

The mutxp argument value is the address of a mutex_t-typed variable. This variable is
defined by the calling thread and is set to reference a mutex lock via the mutex_init function.
The type argument of the mutex_init function specifies whether the mutex lock is accessible
by threads in different processes. Its possible values and meanings are:
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type value Meaning

USYNC_PROCESS The mmutex lock can be used by threads in different
processes

USYNC_THREAD The mutex lock can be used by threads in the call-

ing process only

The argp argument of the mutex_init function is currently unused. Its value should be
specified as 0.

A mutex lock should be initialized only once in a process. It is discarded by the
mutex_destroy function.

A mutex lock is acquired (or locked) by a thread via the mutex_lock function and
released (unlocked) via the mutex_unlock function. The mutex_lock function blocks a calling
thread if the lock has already been acquired by another thread. The thread is unblocked when
the mutex lock is unlocked, and the thread is allowed to acquire it.

The mutex_trylock function is similar to the mu:ex_locic function except that if a
requested lock is already acquired by another thread, the function returns an error status to
the calling thread, rather than blocking it.

13.5.1.2 POSIX.1¢c Mutex Locks

The POSIX.1c APIs for mutex lock operations are similar to that of Sun:

Function Use

pthread_mutex_init Initializes a mutex lock

pthread_mutex_lock Sets a lock on a mutex lock
pthread_mutex_unlock Unlocks a mutex lock

pthread_mutex_trylock Like pthread_mutex_lock, except it is nonblocking
pthread_mutex_destroy Discards a mutex lock

The prototypes of these functions are:

#include <pthread.h>

int pthread_mutex_init ( pthread_mutex_t *mutxp,
pthread_mutexattr_t* attrp);

int pthread_mutex_lock( pthread_mutex_t* mutxp );

int pthread_mutex_trylock ( pthread_mutex_t* mutxp );
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#include <pthread.h>
int pthread_mutex_unlock ( pthread_mutex_t* mutxp );-
int pthread_mutex_destroy ( pthread_mutex_t* mutxp );

The mutxp argument value is the address of a pthread_mutex_t-typed variable. This
variable is defined by the calling thread and is set to reference a mutex lock via the
pthread_mutex_init function. The attrp argument is a pointer to an attribute object for the
new mutex lock. This value may be NULL, if a mutex lock is to use default property values;
otherwise, it is a pointer to a pthread_mutexattr_t-typed object that contains property values
for the new mutex lock.

As an alternative of calling the pthread_mutex_init API, a mutex lock may also be ini-
tialized via the PTHREAD_MUTEX_INITIALIZER static initializer. Thus, the following
code:

pthread_mutex_t lockx;
(void)pthread_mutex_init( &lockx, 0 );

is the same as this statement:

pthread_mutex_t lockx = PTHREAD_MUTEX_INITIALIZER;

The pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock, and
pthread_mutex_destroy have the similar invocation syntax and the same corresponding func-
tion as the Sun mutex_lock, mutex_trylock, _mutex_unlock, and _mutex_destroy APIs, respec-
tively.

13.5.1.3 Mutex Lock Examples

The following printmsg function may be called by any thread to print messages to the
standard output. This function ensures that only one thread can print a message to the stan-
dard output at a time. The main function is a sample application to test the printmsg function:

/* printmsg.C */
static mutex_t lockx; // define the lock storage
void* printmsg (void* msg )

/* acquire the lock */
if (mutex_lock(&lockx))
perror(“mutex_lock”);
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else {
/* print the msg */
cout << (char*)msg << end! << flush;

/* release the lock */
if (mutex_unlock(&lockx)) perror(“mutex_unlock”);
}

}

int main(int argc, char* argv(])
{
/* initialize the mutex lock */
if (mutex_init(&lockx, USYNC_THREAD,NULL)) perror(“mutex_lock”);

/* create threads which call printmsg */
while (--argc > 0)
if (thr_create(0,0,printmsg,argv(argc],0, 0)) perror(“thr_create”);

/* wait for all threads to terminate */
while (!thjr_join(0,0,0)) ;

/* discard the mutex lock */
if (mutex_destroy(&lockx)) perror(“mutex_destroy”);
return O;

}

In the above example, the main function initializes the mutex lock lockx to be used by
all threads in the same process. It then creates multiple threads, one per command line argu-
ment, to call the printmsg function and display the command argument strings t6 the standard
output. It does not matter how many threads call the printmsg function simultaneously, as the
function serves only one thread at a time.

A sample run of the printmsg.C program and its output is:

% CC printmsg.C -lthread -o printmsg
% printmsg  “1" 2" “3"
3
2
1

As another example, the following glob_dar class defines a data type for variables that
can be accessed by multiple threads simultaneously. This class is defined in a glob_dat.h
header:
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#ifndef GLOB_DAT_H
#define GLOB_DAT_H

#include <iostream.h>
#include <thread.h>

#include <stdioc.h>

class glob_dat

{
private:
int val;
mutex_t lockx;
public:

// constructor function
glob_dat(inta)
{

val = a;

if (mutex_init(&lockx, USYNC_THREAD,0)) perror(‘mutex_init’);

|3

// destructor function

~glob_dat() { if (mutex_destroy(&lockx)) perror(“mutex_destroy”); };

// set new value
glob_dat& operator=( int new_val )
{
if (Imutex_lock(&lockx)) {
val = new_val;
if (mutex_unlock(&lockx)) perror(“mutex_uniock”);
Jelse perror(*mutex_unlock”);
return *this;
X
// retrieve value
int getval( int* valp )
{
if ('mutex_lock(&lockx)) {
*valp= val;
if (!'mutex_unlock(&lockx)) return 0;
perror(“mutex_unlock”);
} else perror(“mutex_lock”);
return -1,

¥

// show value to an output stream
friend ostream& operator<<( ostreamé& os glob_dat& gx)

{
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if (!mutex_lock(&gx.lockx)) {
0S << gx.val;
if (mutex_unlock(&gx.lockx)) perror(“mutex_lock”);
} else perror(“mutex_lock™);
return os;
I8
|5 /* glob_dat */
#endif

The actual value of a glob_dat-type variable is stored in the glob_dat::val data field.
The glob_dat::lockx mutex lock is used to serialize the access of the glob_dat::val by multi-
ple threads. The glob_dat::lockx and glob_dat::val members are initialized when a variable
of this type is defined. The glob_dat::lockx mutex lock is discarded when the
glob_dat::~glob_dat destructor function is called.

The glob_dat::getval, glob_dat::operator<<, and glob_dat::operator= member func-
tions allow threads to retrieve, show, and set any glob_dat-typed variable value. By using the
mutex lock, these functions are MT (multithreaded) -safe, meaning they can be called by
multiple threads simultaneously to operate on the same variable without causing problems.

The following example program, glob_dat.C, illustrates how a glob_dat-typed variable,
globx is accessed by multiple threads:

#include <strstream.h>
#include “glob_dat.h”

glob_dat globx (0); // define globx
void* moduval (void* np)
{
int old_val, new_val;
istrstream((char*)np) >> new_val;
if ('globx.getval(&old_val))  { // get current value
globx = old_val + new_val; // add new value
cout << (int)thr_self() << “: arg=" << (char*)np
<< " ->" << globx << endl; // show result
}
return O;
}
int main(int argc, char* argv[])
{
thread_t tid;
while (--argc > 0) // for each command line argument
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if (thr_create(0,0,mod_val,argvargc],0,&tid)) perror(“thr_create”);
while (tthr_join(0,0,0)) ; // wait for threads to terminate
return O;

}

The main function creates the globx variable with an initial value of zero. It then creates
a thread for each command line argument to execute the mod_val function. The actual argu-
ment value passed to each mod_val function call is a command line argument. It is made up
of an integer value text string (e.g., “51"). The mod_val function converts its argument to an
integer value, gets the current value of the globx value and adds the new integer value to the
current value. The resultant value is assigned to the globx variable, which is then printed to
the standard output.

A sample run of the above program and its output is:-

% CC glob_dat.C -Ithread -o glob_dat
% glob_dat “1”“2" “3”

4:arg='3'->3

5.arg=2'->5

6:arg="1"->6

One problem to avoid in using mutex locks is in creating a dead-lock condition within a
process. This may occur when a process uses multiple mutex locks and two or more threads
in that process attempt to acquire these locks in random order. For example, suppose two
mutex locks (A and B) are initialized in a process and two threads (X and Y) in the process use
these locks. Suppose thread X has acquired lock A, and thread Y has acquired lock B. When X
attempts to acquire lock B, it is blocked because lock B is owned by thread Y. If thread Y then
attempts to acquire lock 4, it is also blocked. This creates a dead-lock condition: both X and Y
are blocked as each of them tries to acquire a lock owned by the other. Neither of these
threads can proceed any further, as the owner of the lock is blocked and unable to release the
lock.

To prevent dead-lock conditions, threads that use mutex locks should always acquire
them in the same order and/or use the thr_trywait function instead of thr_wait to acquire
locks. In the first method, because all threads acquire locks in the same order, it is impossible
for a thread to attempt acquiring a lock that is owned by a blocked thread. In the second
method, if a thread uses the thr_trywait function to acquire a lock, the function returns a non-
zero value immediately (if the lock is owned by another thread). Thus, the thread is not
blocked and can perform some other work and try to acquire the lock again later.
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13.5.2 Condition Variables

Condition variables are used to block threads until certain conditions becon.e true.
Condition variables are usually used with mutex locks so that multiple threads can wait on
the same condition variable. This is done as follows: First, a thread acquires a mutex lock, but
is blocked by a condition variable, pending the occurrence of a specific condition. While the
thread is blocked, the mutex lock it acquires is released automatically. When another thread
modifies the state of the specific condition, it signals the condition variable to unblock the
thread. When the thread is unblocked, the mutex lock is reacquired automatically, and the
thread tests the condition again. If the condition remains false. the thread is again blocked by
the condition variable. On the other hand, if the condition is now true, the thread releases the
mutex lock and proceeds with its execution

13.5.2.1 Sun Condition Variables

The Sun thread library functions for condition variable operation are:

Function Use

cond_init Initializes a condition variable

cond_wait Blocks on a condition variable

cond_timedwait Same as cond_wait, except that a time out period
for the block duration is specified

cond_signal Unblocks a thread that is waiting on a condition
variable

cond_broadcast Unblocks all threads that are waiting on a condi-
tion variable

cond_destroy Discards a condition variable

The prototypes of these functions are:

#include <thread.h>

int cond _init ( cond_t *condp, int type, int argp );

int cond_wait ( cond_t* condp, mutex_t *mutxp);

int cond_timedwait ( cond_t* condp; mutex_t* mutxp, timestruct_t * timp );
int cond_signal ( cond_t* condp );

int cond_broadcast ( cond_t* condp );

int cond_destroy ( cond_t* condp );
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The condp argument value is the address of a cond_t-typed variable. This variable is set
to reference a condition variable via the cond_init function. The fype argument of the
cond_init function specifies whether the condition variable is accessible by different pro-
cesses. Its possible values and meanings are:

type value Meaning

USYNC_PROCESS The condition variable can be used by threads in
different processes

USYNC_THREAD The condition variable can be used by threads in

the calling process only

The arg argument of the cond_init function is currently unused. Its value should be
specified as zero.

The cond_wair function blocks the calling thread to wait for the condition variable to
change state as specified by the condp argument. It also releases the mutex lock as specified
by the mutxp argument.

When another thread calls the cond_signal function on the same condition variable, the
mutex lock is reacquired for a pending thread. That thread is unblocked and resumes execu-
tion at the return of the cond_wait function call. If there are multiple threads blocked by the
same condition variable, they should all use the same mutex lock. When the condition vari-
able is signaled, only one of the blocked threads can succeed in acquiring the mutex lock and
proceed with execution. The other threads continue to be blocked by the same mutex lock.

The cond_timewait function is similar to the cond_wait function, except that it has a
third argument rimp which specifies that the calling thread should not be blocked past the
time-of-day as specified in that argument.

The cond_signal signals a condition variable, as specified by the condp argument and
unblocks the thread waiting on that variable. The cond_broadcast signals a condition variable
and unblocks all threads that are waiting. If there is no thread waiting on a signaled condition
variable, the cond_signal or cond_broadcast call on that variable has no effect.

13.5.2.2 Condition Variable Example

The following example illustrates the uses of a mutex lock and a condition variable.
The program, pipe.C, creates a reader thread and a writer thread. The reader thread reads data
from a user and passes them to a writer thread via a global array msgbuf. The writer thread
prints messages contained in the msgbuf to the standard output. The two threads terminate
when end-of-file is encountered from the user. The reader and writer threads synchronize
their access of msgbuf via a mutex lock and a condition variable.
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The pipe.C program is:

#include <iostream.h>
#include <thread.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>

#define FINISH() { cerr << (int)thr_self() << “ exits\n”; \
mutex_unlock(&mutx); thr_exit(0); return 0; }

mutex_t mutx;
cond_t condx;
int  msglen, done;
char msgbuf{256];

/* write messages sent from the reader thread to the standard output */
void* writer (void* argp )

{

do {
mutex_lock(&mutx); // acquire the mutex-lock
while (Imsglen)  { // loop if no message

cond_wait(&condx,&mutx); // wait on the cond. variable
if (done) FINISH(); // kili thread if done

cout << “*> “ << msgbuf << end!; // print mesg to std output
msglen = 0, /I reset msg buffer size
mutex_unlock(&mutx); // release the mutex lock

} while (1);

FINISH(); // clean up and exit

}

/* read messages from user and send them to the writer thread */
void* reader (void* argp )

{
do {

mutex_lock(&mutx); /I acquire the mutex lock

if (Imsglen) { /I check buffer is empty
if (cin.getline(msgbuf,256)) break;  // get input from user
msgien = strlen(msgbuf)+1; // set msg length
cond_signal(&condx); /1 signal writer to read msg

mutex_unlock(&mutx); // release the mutex lock
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} while (1);

FINISH(); // clean up and exit
) ‘

/* main thread to control the reader and writer threads */
main()

{
thread_t wtid, rtid, tid;

/* initialize mutex lock and condition variable */
mutex_init(&mutx, USYNC_PROCESS, 0);
cond_init(&condx, USYNC_PROCESS, 0);

/* create a writer thread */
if (thr_create(0,0,writer,0,0,&wtid)) perror(“thr_create”);

/* create a read thread */
if (thr_create(0,0,reader,0,0,&rtid)) perror(“thr_create”);

/* wait for the read thread to exit "/
if (ithr_join(rtid,&tid,0)) {
done = 1;
cond_signal(&condx);

}

/* clean up */
mutex_destroy(&mutx);
cond_destroy(&condx);
thr_exit(0);

}

The main function initializes the mutx mutex lock and the condx condition variable. It
then creates the writer thread and reader thread to execute the writer and reader functions.
The main thread then waits for the reader thread to terminate via the thr_join function and
signals the write thread to terminate via the done global variable. After the reader and writer
threads are terminated, the main thread discards the mutex lock and the condition variable via
the mutex_destroy and cond_destroy functions, respectively.

The reader thread reads one or more input lines from a user from the standard input.
For each line it reads, it first acquires the mutex lock to make sure it can access the msgbuf
and msglen global variables. When the mutex lock is acquired successfully, the thread puts
the user message into the msgbuf array and sets the msglen variable to be the size of the mes-
sage text. It then uses the cond_signal and mutex_unlock functions to signal the writer pro-
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cess to check the msglen variable. The reader thread terminates when it cannot read an input
text from the user. In that case, it releases the mutex lock and terminates itself via the thr_exit
function.

The writer thread constantly polls the msglen global variable. If the msglen value is not
zero, a message is available in the msgbuf array and can be printed to the standard output. To
process each message, the thread first acquires the mutex lock to make sure it can access the
msglen and msgbuf variables exclusively. If that succeeds, it blocks the cond_wait function
call until the reader thread or main thread calls the cond_signal function to unblock it. When
the writer thread is unblocked, it checks whether the done variable value is nonzero. If 80, the
main thread signals the writer thread to exit. However, if the done variable is zero and the
msglen variable value is not zero, the thread prints the message contained in msgbuf to the
standard output. Otherwise, it goes back to the cond_wait loop to wait for a message to arrive.
Note that when the writer thread is blocked in the cond_wait call, the mutx mutex lock is
released so that the reader or main thread can acquire it. The cond_wait function automati-
cally reacquires the mutex lock before unblocking the writer thread when the reader or main
thread calls the cond_signal function on the condx variable.

A sample run of the pipe.C program and its output is:

%  CC pipe.C -lthread -o pipe
%  pipe

Have a good day

*> Have a good day

Bye-Bye

*> Bye-Bye

5 exists

4 exists

13.5.2.3 POSIX.1¢c Condition Variables

The corresponding POSIX.1c APIs to the Sun APIs for condition variable manipula-
tion are:

POSIX.1c API . Sun API
pthread_cond_init . cond_init
pthread_cond_wait cond_wait
pthread_cond_timedwait cond_timedwait
pthread_cond_signal cond_signal
pthread_cond_broadcast cond_broadcast
pthread_cond_destroy cond_destroy
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The function prototypes of these POSIX.1c APIs are:

#include <pthread.h>

int pthread_cond_init pthread_cond_t *condp, pthread_condattr_t *attr );
int pthread_gpnd_wait ( pthread_cond_t* condp, pthread_mutex_t *mutxp);
int pthread_cond_timedwait (pthread_cond_t¥* condp,

pthread_mutex_t* mutxp, struct timespec* timp );
int pthread_cond_signal ( pthread_cond_t* condp );
int pthread_cond_broadcast ( pthread_cond_t* condp );
int pthread_cond_destroy ( pthread_cond_t* condp );

The condp argument value is the address of a pthread_cond_t-typed variable which ref-
erences an allocated condition variable. The atrr argument of the pthread_cond_init function
is a pointer to an attribute object which specifies properties for the condition variable. The
actual argument for aztr may be 0 if the condition variable is to use default property values.

Note that a POSIX.Ic condition variable may be initialized via the static initializer
PTHREAD_ COND_INITIALIZER. Thus the following code:

pthread_cond_t  cond_var;
(void) pthread_cond_init( &cond_var, 0);

is the same as this statement:
pthread_cond_t  cond_var = PTHREAD_COND_INITIALIZER;

. The pthread_cond_wait, pthread_cond_rimedwait, pthread_cond_signal,
pthread_cond_broadcast and pthread_cond_destroy have the same function as the Sun

cond_wait, cond_timedwait, cond_signal, cond_broadcast and cond_destroy APIs, respec-
tively. Please refer to Section 13.5.2.1 for description of these APIs.

13.5.3 Sun Read-Write Locks

Read-write locks are like mutex locks, except that these locks can be acquired for read-
only and write-only. One or more threads can hold a read lock on a read-write lock simulta-
neously. A thread that wishes to set a write lock on a read-write lock is blocked until all read
locks are released. On the other hand, if a thread acquires a write lock on a read-write iock,
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no other threads can set any read or write lock on it until the former thread releases its write
lock. If two threads attempt to acquire a read-write lock at the same time, one for read and the
other for write, the write lock will be granted. Read-write locks are not as efficient as mutex
locks, but they can be used to permit simultaneous read access of data by multiple threads.

Read-write locks are not defined in POSIX.Ic, so they are Sun-specific. The Sun thread
library functions for read-write locks operations are:

Function
rw_init
rw_rdlock
rw_tryrdiock
rw_wrlock
rw_trywrlock
rw_unlock
rw_destroy

Use

Initializes a read-write lock

Acquires a read lock

Acquires a read lock, in nonblocking mode
Acquires a write lock

Acquires a write lock, in nonblocking mode
Unlocks a read-write lock

Discards a read-write lock

The prototypes of these functions are:

int

#include <thread.h>

int rw_init (rwlock _t *rwp, int type, void* argp );
int rw_rdlock ( rwlock_t* rwp);

int rw_tryrdlock ( rwlock_t* rwp );

int rw_wrlock ( rwlock_t * rwp);

int rw_trywrlock( rwlock_t* rwp );

int rw_unlock (-rwlock_t* rwp );

rw_destroy ( rwlock_t* rwp );

The rwp argument value is the address of a rwlock_t-typed variable. This variable is set
to reference a read-write lock via the rw_init function. The type argument of the rw_init func-
tion specifies whether or not the read-write lock is accessible by different processes. Its possi-
ble values and meanings are:

type value Meaning

USYNC_PROCESS The read-write lock can be used by threads in dif-
ferent processes

USYNC_THREAD The read-write lock can be used by threads in the

calling process only
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The argp argument of the rw_init function is currently unused. Its value should be
specified as zero.

The rw_rdlock function attempts to acquire a read lock on a read-write lock as specified
by the rwp argument. This function blocks the calling thread until the operation succeeds.

The rw_tryrdlock function is like the r»w_rdlock function, except that it is non-blocking.
If the function aborts because the requested lock has been set as write-only by another thread,
it returns a non-zero value and sets the errno to EBUSY.

The rw_wrlock function atiempts to acquire a write lock on a read-write lock as speci-
fied by the rwp argument. This function blocks the calling thread until the operation suc-
ceeds.

The rw_trywrlock function is like the rw_wrlock function, except that it is nonblocking.
If the function aborts because the requested lock is owned by another thread, it returns a non-
zero value and sets the errno to EBUSY.

The rw_unlock and rw_destroy functions unlock and discard, respectively, a read-write
lock as specified by the rwp argument.

The following pipe2.C program is a rewrite of the pipe.C program presented in the last
section. The new program uses a read-write lock instead of a mutex lock and a condition vari-
able to synchronize the reader and writer threads.

I* pipe2.C*/

#include <iostream.h>
#include <thread.h>
#include «string.h>
#include <stdio.h>
#include <signal.h>

rwlock_t rwik;
int  msgien, done = 0;
char msgbuf[256];

/* writer thread function */
void* writer (void* argp )

while (Idone) {

if (rw_rdlock(&rwlk)) perror(“rw_rdlock”); // set a read lock
if (msglen) { // check mesg. exits
cout << “*> “ << msgbuf << endi; // print a message
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msglen = 0; // reset msg. buffer
}
if (rw_unlock(&rwlk)) perror(“rw_unlock(1)”); // unlock rw lock
thr_yield(); /1 yield to other thread
}
/* clean up and exit thread */
cerr << “write thread (“ << (int)thr_self() << “) exits\n”;
thr_exit(0);
return O;
}

/* reader thread function */
void” reader (void* argp )

{
do {
if (rw_wrlock(&rwlk)) perror(“rw_wrlock”); // set a write lock
if (msglen) { // empty buffer ?
if (\cin.getline(msgbuf,256)) break; // get a mesg from a user
msglen = strlen(msgbuf)+1; // set mesg size
}
if (rw_unlock(&rwik)) perror(“rw_unlock(2)"); // uniock rw lock
thr_yield(); /I yield to other thread
} while (1);

/* clean up and exit thread */

cerr << “read thread (“ << (int)thr_self() << “) exits\n";
if (rw_unlock(&rwlk)) perror(“rw_unlock(3)");
thr_exit(0);

return O;

}

/* main thread function */
main()
{ .
thread_t wtid, rtid, tid;
(void)rw_init(&rwlk, USYNC_PROCESS, 0);

/* create a writer thread */
if (thr_create(0,0,writer,0,0,&wtid)) perror(“thr_create”);

/* create a read thread */
if (thr_create(0,0,reader,0,0,&rtid)) perror(“thr_create”);

/* wait for read process to exit */
if (Ithr_join(rtid,&tid,0)) done = 1;
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/* clean up */
rwlock_destroy(&rwlik);
thr_exit(0);

}

The main function initializes a read-write lock, then creates reader and writer threads to
work together. The main thread waits for the reader thread to exit, then signals the writer
thread to terminate via the done variable. After that, the main thread discards the read-write
lock and exits.

The reader thread executes the read function. It gets one or more lines of text from a
user. For each input message line, it acquires a read-write lock for write access. This ensures
that it has exclusive use of the msgbuf and msglen variables. When the write lock is acquired,
the thread writes the message text to the msgbuf array, sets the msglen to the size of the mes-
sage text, and releases the read-write lock. The thread then yields ts execution to the writer
thread, so that the latter can access the lock and msgbuf variable. After that, it gets the next
message from the user and repeats the above process. The thread exits when it cannot read
any text from a user. When that happens, it unlocks the read-write lock and exits via the
thr_exit function.

The writer thread executes the write function. It reads one message at a time from the
reader thread and prints the message to the standard output. For each message it processes, it
first acquires a read lock on the read-write lock and checks that the msglen variable value is
greater than zero. If a message is present in the msgbuf variable, the thread prints the message
to the standard output and resets the msglen to zero. After these procedures, the thread
unlocks the read-write lock and yields its execution to the reader thread so that the latter can
access the lock and put the next message into the msgbuf buffer. The thread terminates when
the global variable done is set to nonzero by the main thread. This means that no more mes-
sages are available, and the thread exits via the thr_exit function.

A sample run of the pipe2.C program and its output is:

%  CC pipe2.C -lthread -o pipe2
%  pipe2

Have a good day

*> Have a good day

Bye-Bye

*> Bye-Bye

AD .

read thread (5 )exists

write thread (4) exists

%
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13.54 Semaphores

Both the Sun thread library and POSIX.1c provide APIs for semaphore manipulation
of. These thread-based semaphores are similar to System V semaphores in that each sema-
phore has an integer value that must be either zero or a positive number. A semaphore value
may be set by any thread that has access to it. If a thread attempts to decrement a semaphore
value that will result in a negative number, the thread is blocked. It remains this way until
another thread increases the semaphore value to a large enough number for the blocked
thread’s operation on the semaphore to result in a zero or positive value.

The blocking features of semaphores can be used to synchronize the execution of cer-
tain code segments or the access of shared data by multiple threads. Before accessing a
shared resource, each thread attempts to decrement a semaphore value by 1. Only one of
them succeeds, while the rest are blocked. Once the successful.thread finishes using the
shared resource, it increments the semaphore value to its previous value so that another
thread can be unblocked and proceed with accessing the shared resource.

Semaphores can be usea in place of mutex locks and condition variables. However,
whereas mutex locks can be released only by the threads holding them, any thread can incre-
ment or decrement a semaphore to which they have access. To ensure program reliability,
additional programming effort is needed by users to keep track of what each thread is doing
in regard to a semaphore.

POSIX.Ic uses the same semaphore APIs as in POSIX.1b for thread synchronization.
Please refer to Chapter 10, Section 10.6 for a description of these APIs. Sun Microsystems,
on the other hand, defines a different set of semaphore APIs for thread synchronization.
These APIs and their correspondence to the POSIX.1b semaphore APIs are:

Sun API POSIX.1b API Use

sema_init sem_init Initializes a semaphore

sema_post sem_post Increases a semaphore value by 1

sema_wait sem_wait Decreases a semaphore value by 1

sema_trywait sem_trywait Decreases a semaphore value by I, but
nonblocking

sema_destroy sem_destroy Discards a semaphore

The prototypes of the Sun semaphore APIs are:

#include <synch.h>
int sema_init ( sema_t *svp, int init_val, inlt iype, void* argp );
int sema_wait ( sema_t* rvp ),
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#include <synch.h>

int sema_trywait ( sema_t* rvp );
int sema_post ( sema_t * svp);
int sema_destroy ( sema_t* svp );

The svp argument value is the address of a sema_t-typed variable. This variable is set to
reference a semaphore via the sema_init function. The new semaphore is set to an initial
value as specified by the init_val argument. The fype argument of the sema_init function
specifies whether or not the semaphore is accessible by different processes. Its possible val-
ues and meanings are: :

type value Meaning

USYNC_PROCESS The semaphore can be used by threads in different
processes

USYNC_THREAD The semaphore can be used by threads in the call-

ing process only

The argp argument of the sema_init function is currently unused. Its value should be
specified as zero.

The sema_wait function attempts to decrement the value of a semaphore as specified by
the svp argument. This function blocks the calling thread until the operation succeeds.

The sema_trywait function is like the sema_wait function, except that it is non-block-
ing. If the function aborts because the requested semaphore value cannot be decreased, it
returns a nonzero value and sets the errno to EBUSY.

The sema_post function increases the value of a semaphore as specified by the svp
argument.

The sema_destroy function discards a semaphore as specified by the svp argument.

The following pipe3.C program is a rewrite of the pipe.C program presented in the last
section. The new program uses a semaphore instead of a read-write lock to synchronize the
reader and writer threads.

/* pipe3.C */
#include <iostream.h>
#include <thread.h>
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#include <string.h>
#include <stdio.h>
#include <signal.h>

Thread Synchronization Objects

#define FINISH() { cerr << (int)thr_self() << “ exits\n”; thr_exit(0); return 0; }

sema_t semx;
int msglen, done;
char msgbuf[256];

/* a write thread function */
void™ writer (void* argp )
{
do {
sema_wait(&semx);
if (msglen) {
cut << “*> "
msglen = 0;
}
sema_post(&semx);
thr_yield();
} while (!done);
FINISH();
}
/* a reader thread function */
void* reader (void* argp )

{

<< msgbuf << end};

do {
sema_wait(&semx);
if (Imsglen) {
if (cin.getline(msgbuf,256))
msglen = strlen(msgbuf)+1;
else done = 1;
}
sema_post(&semx);
thr_yield();
} while (!done);
FINISH();
}

/* main thread function */
main()
{

thread_t wtid, rtid:

/f acquire a semaphore

/1 if a message is in buffer
// print out the message
/ reset message buffer size

/l release a semaphore

/1 et other threads run

// do until no more messages
/I clean-up and terminate

// acquire a semaphore

// check buffer is empty

// get a new message

I/ set message size to msgien
/I nc more input messages

// release the semaphore

// et other threads run

/1 do until no more messages
// clean-up and terminate

/* initialize a semaphore with an initial value of 1 */
sema_init(&semx, 1, USYNC_PROCESS, 0);
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/* create a writer thread */

if (thr_create(0,0,writer,0,0,&wtid)) perror(“thr_create”);
/* create a reader thread */

if (thr_create(0,0,reader,0,0,&rtid)) perror(“thr_create”);

/* wait for all threads to exit */
while (thr_join(0,0,0)) ;

/* clean up */

sema_destroy(&semx);

thr_exit(0); '
}

The above program is similar to the last two examples. The difference here is that a
semaphore is used instead of a mutex lock, condition variable, or read-write lock. Specifi-
cally. a semx semaphore is initialized in the main thread with an initial value of 1. When the
reader and writer threads are run, both try to acquire the semaphore via the sema_wait func-
tion cail. Only one of them can succeed.

If the writer thread acquires the semaphore before the reader thread does, it finds the
message buffer empty and releases the semaphore. This yields its execution to the reader
thread. When the reader thread acquires the semaphore, it reads a message from the user and
puts it into the msgbuf array. This sets the msglen to be the size of the message text. It then
releases the semaphore and yields its execution to the writer thread.

When the writer thread is unblocked by the semaphore, it finds that the msgbuf is not
empty and prints the message contained in it to the standard output. It then resets the msglen
variable and releases the semaphore. This starts the next round of message processing by the
reader and writer threads.

When a reader thread cannot read a message from the standard input (may be due to
end-of-file), it sets the done variable to 1. This signals both itself and the writer thread to ter-
minate via the thr_exit function call.

A sample run of the pipe3.C program and its output is:

%  CC pipe3.C -lthread -0 pipe3
%  pipe3

Have a good day

*> Have a good day

Bye-Bye

*> Bye-Bye

AD
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5 exists
4 exists

13.6 Thread-Specific Data

Automatic variables and dynamic memory allocated within a function are owned by
each thread that executes that function. Global and static variables can be shared by multiple
threads, but they must use mutex locks, conditional variables, etc. to synchronize their access
of shared data. Some other global variables, however, cannot be synchronized to maintain a
minimum level of concurrency within multithreaded programs. For example, the errno vari-
ables defined in the C library are set by each system call. Thus, if multiple threads make sys-
tem calls concurrently, the errno variable must be set to different values for different threads.
This problem can be worked around by requiring that only one thread at a time make a sys-
tem call. This renders multithreaded programs to run in single-threaded mode.

The errno problem is resolved by the thread library, which automatically creates a pri-
vate copy of errno for each thread that makes system calls. Thus, multiple threads can make
system calls and check their errno values at the same time.

Another similar problem is when functions contain static variables concurrently acces-
sible by multiple threads. For example, the C library function ctime returns the character
string of a local date and time. This string is stored in the internal static buffer of the ctime
function:

const char* cime ( const time_t *timval )

{
static char timbuf{...];
/* convert timval to local date/time and store result to timbuf */
return timbuf;

}

Thus, if several threads call the above ctime function simultaneously, the function must
somehow be able to return different results for different threads. One could resolve the above
problem by allocating dynamic buffers to store the requested date/time in each call. However,
this causes several problems:

* The function takes more time and memory to execute. This taxes the performance
and memory requirement of programs that use this function

* Existing programs that use this function need to be changed to deallocate the
dynamic memory returned by this function

* Unchanged single-threaded programs cannot be used in the multithreaded environ-
ment.
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To solve the above problem, both POSIX.1c and Sun define “re-entrance” versions of
popular library functions. These new functions can be called by muitiple threads concurrently
with no side effects, and their performance is the same as or better than their single-threaded
counterparts. The names of these re-entrance functions are the same as their counterparts but
with a _r suffix. Thus, the re-entrance version of the ctime function is called ctime_r. All
these new functions take one additional argument, which is the address of a variable that
holds the returned value. The variable is defined by the calling threads. Thus, multiple threads
may call the same function simultaneously and each receives its answer via its supplied vari-
able. Existing or single-threaded programs may continue to use the old library functions and
are not affected by the multithreaded environment. New multithreaded programs should use
the re-entrance versions of library functions.

The new ctime_r function definition is as follows:

char* ctime_r (const time_t* timval, char buf{])

{

/* convert timval to local date/time and store the result to buf */
return buf;

Note that the ctime_r function uses its input argument buf to store the caller’s requested
date and time stamp and returns the buf address to the caller.

Sun provides re-entrance versions of C, math, and socket library functions.

Even with re-entrance functions and thread library-supported global variables that are
defined dynamically for each thread, there may still be a need to have user-defined thread-
specific data. For example, users who develop a utility package (for example, a new GUI
package) that can be used by other programmers may wish to define their own versions of
errno. This would allow their users to check ermo for any error code returned by the utility
functions. However, their package functions may be called by multiple threads concurrently,
creating a need for their functions to define a per-thread-specific errno. Before showing how
this is done. the following functions are defined in the Sun thread library for manipulation of
thread-specific data:

Function Use

thr_keycreate Defines a common key for all threads
thr_setspecific Store a thread value to a key
thr_getspecitic Retrieves a thread value from a key
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The prototypes of these functions are:

#include <thread.h>

int thr_keycreate( thread_key_t * keyp, void (* destr)(void®*) );
int thr_setspecific ( thread_key_t key, void* valuep);
int thr_setspecific( thread_key_t key, void** valuep);

The keyp argument value is the address of a thread_key_t-typed variable. This variable
is initialized by the thr_keycreate function. The optional destr argument is the address of a
user-defined function that may be called to discard a thread value. This occurs when a thread
that has registered a value with the *keyp variable terminates. The argument value passed to
the destr function is the address of a terminating thread value that is registered with the *keyp
via the thr_setepecific function.

The thr_setspecific function is called by a thread fo register a value with a key. The key
argument specifies which key with which to register. The valuep argument contains the
address of the thread value. A key may maintain multiple values at any one time, but only one
per thread.

The thr_getspecific function is called to retriove the value of a calling that which has
been registered with a key designated by the key argument. The thread value is returned via
the valuep argument.

The following pkg.h header defines a data class that can be used by multiple threads
simultaneously. Specifically, the class defines an errno and an ofstream object for each thread
so that there are no conflicts among threads calling the same class functions. The pkg.h file
content is:

#ifndef PKG_H
#define PKG_H
#include <fstream.h>
#include <stdio.h>
#include <thread.h>

/* record to store a set of thread-specific data */
class thr_data

{
int errno; // errno for a thread
ofstream& ofs; // output stream for a thread
/* other stuffs */
public:

/* constructor */
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thr_data( int errval, ofstream& os) : errno(errval), ofs(os) {};

/* destructor */ ,
~thr_data() { ofs.ciose(}); };

/* return a thread’s errno */
int& errval() { return errno; };

/* rewurn a thread’s ostream handle */
ofstream& os()  {returnofs; };

/* other member functions */

/* Utility package class */
class Xpackage

thread_key_t key; // key for all threads
ofstream ocerr; // default output stream
/* other package data */

public:

/* called when a thread dies. Discard a thread-specific data */
friend void destr( void* valueP )

{
thr_data *pDat = (thr_data*)valueP;

delete pDat;
k

/* constructor */
Xpackage() : ocerr(“err.log”)

{
if (thr_keycreate(&key,destr)) perror(“thr_create”);
¥
/* destructor */
~Xpackage() { ocerr.close(); };

/* called when each thread starts */

void new_thread( int errval, ofstreamé& os )

{
thr_data *pDat;
pDat = new thr_data(errval, 0s); // alloc a thread-specific data
if (thr_setspecific(key,pDat)). perror( “thr_setspecific”);

h
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/* set a thread’s errno and return a value */
int set_errno( int rc )

{
thr_data *pDat;
if (thr_getspecific(key,(void"*)&pDat))
perror(“thr_getspecific”);
else pDat->errval() = rc;
returnrc==070:-1;
%
/* return current errno value for a thread */
int errno()
{
thr_data *pDat;
if ('thr_getspecific(key,(void**)&pDat))
return pDat->errval();
else perror(“thr_getspecific”);
return -1;
L

/* return a thread's outstream handle */
ofstream& os()
{
thr_data *pDat;
if (thr_getspecific(key,(void**)&pDat)) return pDat->0s();
perror(“thr_getspecific”);
return ocerr;

b

/* a sample package function */
int chgErrno(int new_val )

{
X

/* other package functions */

return set_errno( new_val +int(thr_self() );

#endif /* PKG_H */

All thread-specific data are stored in a thr_dara-typed record. The record stores ermo
and ofstream objects that are private for each thread. Users may redefine the thr_data class to
contain additional thread-specific data if desired.

There should be a Xpackage-typed variable defined globally in every user program.,
When the program starts up, the Xpackage::Xpackage() constructor is called, which initial-
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izes the Xpackage::key variable shared by all threads in the process. The Xpackage::ocerr
variable references a default output stream in case a thread-defined output stream cannot be
opened. If a user wants to store different types of thread-specific data in a process, he or she
may define multiple Xpackage-typed variables, one for each type of thread-specific data.

The Xpackage::set_ermo() is called by the package functions to set the errno value for
a calling thread. The Xpackage::ermo() is called by a thread to retrieve its private errno
value. The Xpackage::os() is called to return an output stream object for a thread.

The Xpackage: :chgErmo() is a sample package function that performs useful tasks. In
this example, however, the Xpackage::chgErrno() function does nothing but set the per-
thread errno value to be the thread ID plus 100. Like all other defined package functions, it
returns a O value if succeeds or a -1 value otherwise (the thread-specific errno is set with an
error code accordingly).

The destr function is called whenever a thread terminates. The destr function discards
thread-specific thr_data-typed data. If a thread has registered multiple thr_data-typed records
with multiple Xpackage-typed variables, then the destr function is called multiple times, once
for each thr_data-typed data belonging to the terminating thread.

The following thr_errmo.C file depicts a sample user program that makes use of the
Xpackage class. The file content is:

#include “pkg.h”
Xpackage pkgObj; /* a package object */

/* function executed by each thread */
void* func1( void* argp )

{

int *rcp = new int(1);

/* open a thread's outstream */
ofstream ofs ((char*)argp);

if (tofs) thr_exit((void**)&rcp);

/* initialize a thread-specific data */
pkgObj.new_thread( 0, ofs );

* I do work with package functions here */
pkgObj.chgErrno( 100 ); /* change a thread's errno */

/* write some data to a thread's outstream */
pkgObj.0s() << (char*)argp << “[*<< (int)thr_self() << “] finishes\n”;
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/* thread terminates, set exit code */
*rcp = pkgObij.errno();
thr_exit(rcp);
return O;
}

/* main thread's function */
int main(int argc, char** argv)
{
thread_t tid;
int *rc;

/* create a thread for each command line argument */
while (--argc > 0)
if (thr_create(0,0,func1,(void*)argv[argc],0,&tid)) perror(“thr_create”);

/* wait for all threads to terminate */
while (!thr_join(0,&tid,(void**)&rc))  {
cerr << “thread: “ << (int)tid << “ exists. rc=" << *rc << endl;
delete rc; // delete thread’s dynamic mem

}

/* terminate the main thread */
thr_exit(0);
return O;

}

The program is invoked with one or more file names as command line arguments. Each
argument is the file name of a thread output stream. For each argument, the main thread cre-
ates a new thread to execute the funcl function. The argument to the funcl function is the new
thread’s output stream file name. After all the threads are created, the main thread waits for
them ta exit and then terminates.

When a thread starts executing the func/ function, it defines an ofstream object to refer-
ence the given output file. It then calls the pkgObj.new_thread() to allocate its thread-specific
data storage, which stores the ofstream object and initializes the ermo value to zero. When
these are done, the thread calls the package functions to perform actual work. At the end it
calls the pkgObj.chgErrmo() function to set its errmo value to 100 plus its thread ID value.
This causes the errno value of each thread that executes the Jfuncl function to be unique for
each thread. The thread then calls the PkgObj.os() function to return its output stream object
and also prints the stream object output file name and thread ID. The thread terminates by
specifying its private erro value as the actual argument to the thr_exit function call.

The sample run of the thr_ermo program and its output is:
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%  CC thr_errno.C -o thr_errno -ithread
%  thr_errno a b

thread: 5 exists. rc=105

thread: 4 exists. rc=104

% cata
a [5] finishes
% catb

b [4] finishes

In the above sample run, the thr_errno program is invoked with two file names: a and b.
Two threads are created to execute the funcl functions. The first thread ID is 5 and it creates
an output file called a with the content of a [5] finishes. The thread terminates with an exit
value of 104. The second thread 1D is 4. It creates a file called b with the content of b [5] fin-
ishes and its exit value is 105.

13.7 The Multithreaded Programming Environment

To support multithreaded programming, Sun Solaris provides a thread library for users
to create and manipulate threads in their programs. There are also modifications in the stan-
dard libraries such that there are re-entrance versions of many popular library functions. Glo-
bal variables (e.g., errno) that are exported from standard libraries are defined dynamically
for each thread that uses them. All of these ensure that multiple threads make use of standard
libraries concurrently with reliable results.

Besides all the above, Sun Solaris also modifies the kernel to support symmetrical
multi-processing and LWP scheduling. There is also a multithreaded version of the debugger
and truss commands which debug and trace individual thread activities in a process. All of
these features are expected to be provided by other vendors that support multithreaded pro-
gramming environments on their systems.

13.8 Distributed Multithreaded Application Example

This section describes a multithreaded distributed program. This is an interactive pro-
gram that executes user shell commands on any machine on a LAN. The program uses RPC
to communicate with dedicated RPC servers running on remote hosts. When a user issues a
shell command, the program creates a thread to connect with an RPC server on a user-speci-
fied host. The server executes the user command on that host. and its return status code is
checked by the thread to flag any error code to the user.
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By using a thread to handle each user command, the program can accept a new com-
mand while it is executing one or more previous commands by other threads. Thus users do
not have to wait for each command to finish execution before issuing another one. This
makes the program more “interactive” than an equivalent program that is single-threaded.
Furthermore, the program can readily make use of any multi-processor resources that may be
available on its the host machine.

By using RPC, the program can distribute its work loads to other computers on the net-
work. This greatly enhances the performance and flexibility of the program. Furthermore, by
using the RPC broadcasting technique, the program can automatically determine which hosts
have its RPC servers running for communication purposes. Thus, the only setup required for
users is to load the RPC servers on host machines of their choice (which may be heteroge-
neous platforms such as UNIX workstations, VMS machines and Windows-NT machines)
and run the program on a host machine that supports multithreaded programs (e.g., a Sun
Solaris workstation).

The RPC server that communicates with -the interactive program and executes user
shell commands is contained in the shell_svc.C program. This program uses the RPC classes
as defined in Chapter 12 to create a RPC_svc object for RPC operations. The shell_svc.C file
is:

#include “mshell.h”
#include “RPC.h"
RPC_svc *svcp; /I RPC server object pointer

/* RPC function to execute one user's shell command */
int execshell( SVCXPRT* xtrp )
{

static int res=0, rc= RPC_SUCCESS;

char *shell_cmd = 0;

/* get user’s shell command from a RPC client */
if (svep->getargs( xtrp, (xdrproc_t)xdr_string, (caddr_t)&shell_cmd)
'=RPC_SUCCESS)
return -1;

/* execute the command via the system function */
res = system(shell_cmd);

/* send execution result to the RPC client */
if (svep->reply(xtrp, (xdrproc_t)xdr_int, (caddr_t)&res)!=RPC_SUCCESS)
rc= -2;

return rc;
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/* RPC server main function */
int main(int argc, char* argv(j)
{
/* create a RPC server object for the execshell tunction */
RPC_svc *svep = new RPC_svc( SHELLPROG, SHELLVER,
argc==2 ? argv[1] : “netpath”);
if (svep Il svep->goced()) return 1;
/* wait for RPC clients’ requests */
if (svep->run_func( EXECSHELL, execshell )) return 3;
return O; /* shouldn't get here */

}

The RPC server program creates an RPC_svc object to execute the execshell function
when requested by a RPC client. The execshell function takes a NULL-terminated character
string from a clien: that contains a UNIX shell command. It calls the system function to exe-
cute that shell command. The return value of the system function call is returned to the RPC
client via the RPC_svc::reply function. The RPC server process is a daemon and is run in the
background uatil the system is shut down or is explicitly killed by a user.

The RPC.h header and its companion RPC.C files are defined in Section 12.5 of Chap-
ter 12. The following mshell.h header defines the RPC program number, version number, and
function number for the execshell function:

#ifndef MSHELL_H
#define MSHELL_H
#include <rpc/rpc.h>

#defineSHELLPROG ((unsigned long)(0x20000001))
#defineSHELLVER ((unsigned long)(1))
#defineEXECSHELL ((unsigned long)(1))

#endif /* IMSHELL_H */

The RPC server program is compiled and run as follows on any computer that supports
UNIX System V Release 4-style RPC functions:

% CC -DSYSV4 shell_svc.C RPC.C -o shell_svc -Insl
% shell_svc &

The interactive main program is main_shell.C. It is a menu-driven program that repeat-
edly displays a menu of selections to the standard output. A user enters a selection by the
menu index. and the program executes that selection via a thread. The main_shell.C program
is:
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#include <strstream.h>
#include <thread.h>
#include <string.h>
#include <stdio.h>
#include “mshell.h”
#include “shellObj.h”

/* collect remote hosts that have server running on it */
extern void* collect_hosts( void™ argp );

extern void* display_hosts( void* argp );

extern void” exec shell( void* argp );

shellObj *funcList[4]; // dispatch table
int numFunc = sizeof(funcList)/sizeof(funcList[0]);
rwlock_t  rwick; : /I read-write lock

/* Quit program */
void* quit_prog( void* argp )
{

return (void*)0;

}

/* Execute one shell command on a host */
void* getcmd( void* argp )
{
char host{20], cmd[256], cmd2[256];
cout << “shell cmd> “ << flush;
cin >> cmd;
cin.getline(cmd2,256);
cout << “host: “ << flush;
c¢in >> host;
if (Icin)
cout << “Inavlid input\n” << flush;
else
{
if (strlen(cmd2)) strcat(strcat(cmd,” “),cmd2);
strcat(strcat(cmd,’/”),host);
char* ptr = new char[strlen(cmd)+1];
ostrstream(ptr,strien(cmd)+1) << cmd;
if (thr_create(0,0,exec_shell,ptr, THR_DETACHED,0)) per-
ror(“thr_create”);
}
return (void*)1;

}
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/* Get an user input selection and execute it */
int exec_cmd()

{

}

char buf[256};
cout << “Selection> “ << flush;
cin >> buf;
cout << endl;
if (cin)
{
int idx = -1,
istrstream(buf) >> idx;
if (idx >=0 && idx < numFunc)
return funcList[idx]->doit(0);
else cerr << “Invalid input\n”;
}
return 0O;

/* display menu to user */
void display_menu(ostream& os)

{

}

for (int i=0; i < numFunc; i++)
(void)funclListfi]->usage(0s,i);

/* initialize read-write lock and dispatch table */
int init_all()

{

}

/* initialize the read-write lock */
if (rw_init (&rwick, USYNC_THREAD, 0))
{
perror(“rwlock_init");
return -1;
}
/* initialize the dispatch table */
funcList[0] = new shellObj( “Coliect host names”, collect_hosts);
funcList[1] = new shellObj( “Display host names”, display_hosts);
funcList[2] = new shellObj( “Execute a shell command” aetcmd, 0);
funcList{3) = new shellObj( “Quit”, quit_prog, 0);
return O;

/* main routine */
int main()

if (init_all() == 0)
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do {
display_menu(cerr);
if (lexec_cmd()) break;
} while (1);
thr_exit(0);
}

In this interactive program. there are four menu selection to users:

Index Function Usage

0 collect_hosts Finds all hosts running the RPC server

1 display_hosts Displays all host names running the
RPC server

2 getcmd Execute some shell command

3 quit_prog Quits the interactive program

The above four functions’ addresses are stored in a dispatch table funcList. When a user
enters a selection, that integer value is used to index the dispatcher table and to invoke the
function for that entry. For example, if a user enters a selection of zero, the collect_hosts
function is invoked.

Each entry of the funclist table is a pointer to a shellObj object. The shellObj class is
defined in the shellObj.h header as:

#ifndef SHELLOBJ_H
#define SHELLOBJ_H

#include <iostream.h>

#include <thread.h>

#include <string.h>

typedef void* (*FNPTR)( void *);

class shellObj

{
char help_msg;
FNPTR action;
void* (*fnptr)( void* );
int create_thread,;
public:

// constructor. Set help msg, action func and errno
shellObj( const char* msg, FNPTR func, int thr_ok=1)
{
help_msg = new char{strlen(msg)+1];
strepy(help_msg,msg);

576



Chap. 13. Distributed Multithreaded Application Example

action = func; -
create_thread = thr_ok;

|5

/! destructor function

~shellObj() { delete help_msg; };

// print object usage

ostream& usage( ostream& os, int idx)

{
08 << idx << “* << help_msg << end|;
return os;

h

// do action
int doit( void* argp )
{
if (create_thread) {
thread_t tid;
if (thr_create(0,0,action,argp, THR_DETACHED, &tid))
perror(“thr_create”);
return (int)tid;

else return (int)action(argp);
2
13
#endif /* \ISHELLOBJ_H */

Each shellObj object contains a help message that explains its use, a function pointer to
a user-defined function (which may be called to do the actual work of the object), and a flag
to specify whether or not the user-defined function should be invoked via a thread when it is
called. The four shellObj objects for the four functions collect_hosts, display_hosts, getcmd
and quit_prog are created and referenced via the funcList table entry 0, 1, 2, and 3, respec-
tively.

The main function of the interactive program first calls the init_all function to initial-
ize: (1) the read-write lock rwick; and (2) the funcList dispatch table with four shellObj
objects. After that, the main function goes into a loop, calling the display_menu function to
display a selection menu to a user. It next calls the exec_cmd function to prompt a user for a
‘menu selection and invokes a function fer that selection. The loop exits when the exec_cmd
returns a zero value and the main function terminates via the thr_exit function.

The display_menu function scans through the funcList dispatch table and invokes ‘the
shellObj: :usage() function of each shellObj object addressed by table entry. This causes each
shellObj object to print out its use and dispatch table index to the output stream cerr.
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Each user selection to the menu is obtained via the exec_cmd function. The function
checks that the user input index is in the range of zero to 3 and flags an error if this is not true.
If user input is valid, the exec_cmd function uses that number as an index to the funcList table
to obtain a pointer to a shellObj object. It then invokes the shellObj::doit() function of that
object. The exec_cmd function returns either a zero value, if it cannot obtain data from a user,
or the return value of the shellObj::doit() function that it invoked.

The exec_cmd function passes the 0 argument value to each shellObj: :doit() function it
invokes. For the menu selection of 0 and 1, the corresponding collect_hosts and display_hosts
functions are executed by detached threads immediately. However, for the menu selections of
2 and 3, the corresponding getcmd and quit_prog functions are not executed by detached
threads. Each of these four functions returns a nonzero value if its execution is successful, a
zero value if it fails.

The threads created to execute the collect_hosts and display_hosts functions are
detached from the main threads. This weans that as soon as they terminate, their resource and
thread IDs can be reused by other new threads. This is so because the interactive program
may run for a long time and must maintain its responsiveness to user inputs. It cannot afford
to suspend itself in any thr_join function call to wait for other threads to exit.

There is no argument value passed to any collect_hosts and display_hosts function
calls. The getcmd function gets an input shell command and a host name from a user. It then
creates a thread to execute the exec_shell function. The actual value passed to the exec_shell
function is a NULL-terminated character string that contains a shell command, followed by a
“/" and finally a host name where the command is to be executed. Thus, if an actual argument
passed to an exec_shell function is:

“cal 1995 > foo/fruit”

it asks to execute the cal 1995 > foo shell command on the host fruit. The list of available
hosts that have the shell_svc daemon installed are collected by the collect_hosts functions,
and the list is displayed to the user via the display_hosts function.

The collect_hosts, display_hosts, and exec_shell function definitions are contained in
the shell _cls.C file: :

#include <fstream.h>
#include <strstream.h>
#include <stdio.h>
#include <netdir.h>
#include <string.h>
#include <thread.h>
#include “mshell.h”
#include “RPC.h"
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#define TMPFILE “/tmp/hosts”

/* read-write lock to synchronize the access to the hostlist table by threads */
extern rwlock_t rwick; // defined and initialized in main_shell.C

/* maintain a list of available hosts */

#define MAXHOSTS 30

static char *hostlistfMAXHOSTS]; /] list of host names
static int numhosts; // actual no. of hosts

/* make a RPC call to a server to execute one shell command */
int exec_host( const char* cmd, char® host )
{

int res=0;

/* create a client handle to connect to the RPC server */

RPC _cls cl( host, SHELLPROG, SHELLVER, “netpath”);

if (Icl.good()) return 1,

/* authenticate client tothe RPC server */

cl.set_auth( AUTH_SYS );

/* call the execshell function on the server */
if (cl.call( EXECSHELL, (xdrproc_t)xdr_string, (caddr_t)&cmd,
(xdrproc_t)xdr_int, (caddr_t)&res) = RPC_SUCCESS)
return 2;

// flag an error if execshell fails
if (res!'=0) cerr << “cnt: exec cmd fails\n”;
return res;

}

/* check if a named host is in the hostlist table */
int check_host( const char* hostnm )

{

if (rw_rdlock(&rwick)) perror(“rw_rdlock”); // acquire lock for read

for (int i=0; i < numhosts; i++)

if ('strcmp(hostlist[i],hostnm)) break; // break if name found
if (rw_unlock(&rwick)) perror(“rw_unlock’); // release read lock
return (i < numhosts) ? 1:0; // return 1 is name is OK

}

/* Executed by a thread created by func3: exec one command on a host */
void* exec_shell( void* argp )

{
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intrc =0;

char* cmd = (char*)argp;

char* host = strrchr(cmd,”);

*host++ = \0’;

if (\check_host(host)) { // check host name is OK
cout << “Invalid host: ” << host << “\n” << flush;
rc=1;
thr_exit(&rc); // exit with an error

rc = exec_host( cmd, host );
thr_exit(&rc); // exit thread
return O;

I* Executed by a thread called by func2: display all available hosts */

void* display_hosts( void* argp )

{

intre =0;
char buf[256], cmd[256];

if (rw_rdlock(&rwick)) perror(“rw_rdlock”); // acquire a read lock

if (Inumhosts) // NOP if no hosts
rc=-1;

else {

/* store the hosts listing to a temporary file */
ostrstream(buf,256) << TMPFILE << “” << thr_self();
ofstream ofs (buf);
if (‘ofs)

cerr << “Create temp file " << buf << “ failed\n”™;
else {

for (int i=0; i < numhosts; i++)

ofs << i<<“ “<< hostlistfi] << endl;
ofs.close();

/* pop-up a'xterm to display the host listing */
ostrstream(cmd,256) << “xterm -title Hosts -e view “ << buf:
if (system(cmd)) perror(“system”);

/* remove the temporary file */
if (unlink(buf)) perror(“unlink”);

}
}
if (rw_unlock(&rwick)) perror(“rw_unlock”); // release the read lock
thr_exit(&rc); // terminate the thread
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if (rw_unlock(&rwick)) perror(“rw_unlock”); // release the read lock
thr_exit(&rc); // terminate the thread
return O;

/* record a remote host name to the hostlist table */
int add_host( const char* hostnm )

{

int new_entry = 1; // success return code
if (rw_wrlock(&rwick)) perror(“rw_wrlock™); /I acquire write lock
for (int i=0; i < numhosts; i++) // is name in table?

if (Istrcmp(hostlist[i],hostnm)) break;

if (i >= numhosts) { // name not in list
if (numhosts >= MAXHOSTS)
cerr << “Too many remote hosts detected\n”;
else | // add a new entry
hostlistinumhosts] = new char[strlen(hostnm)+1];
strcpy(hostlistinumhosts++],hostnm);

}
}
else new_entry = 0; // failure return code
if (rw_unlock(&rwick)) perror(“rw_unlock”); // release write lock

return new_entry;

/* client’s broadcast call back function */
bool_t callme (caddr_t res_p, struct netbuf* addr, struct netconfig nconf)

{

struct nd_hostservlist *servp;
/* extract server's hostname(s) from the addr argument */
if (netdir_getbyaddr(nconf,&servp,addr))
perror(“netdir_getbyaddr”);
else for (int i=0; i < servp->h_cnt; i++) // add host names to hostlist table
if (!add_host( servp->h_hostservs]i].h_| host ))
return TRUE; /* end broadcast if found a host twice */

return FALSE; // get more servers’ responses
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int rc = RPC_cls::broadcast( SHELLPROG, SHELLVER, 0,
(resultproc_t)calime, (xdrproc_t)xdr_void,
(caddr_t)NULL, (xdrproc_t)xdr_void, (caddr_t)NULL);

/* check broadcast results */
switch (rc) {

case RPC_SUCCESS: // successful
break;
case RPC_TIMEDOUT: // time-out
if (numhosts) break;
default: /* flag an error if no hosts responded */
cerr << “RPC broadcast failed\n”; // fail
rc=1;
}
thr_exit(&rc); // terminate the thread
return O;

}

When the collect_hosts function is invoked, it makes an RPC broadcast call to ping all
shell_svc daemons on the network. Each daemon respanse to the RPC broadcast is registered
by the callme function. This function extracts the daemon’s host name via the
netdir_getbyaddr function and adds that host name to the hostlist table via the add_host func-
tion. The add_host function returns a value of 1 if it successfully adds a new host name to the
hostlist table, a zero value otherwise. The callme function terminates the RPC broadcast if it
sees that the same host responds to the broadcast twice. This would indicate that the RPC
broadcast has not received any new responses and is in the rebroadcast process.

Once the RPC broadcast is_finished, the collect_hosts tunction checks the broadcast
result and terminates its thread with a return value of RPC_SUCCESS for success and a non-
zero value for failure.

Note that access to the hostlist table is guarded by the read-write lock rwick. This is
needed as the hostlist table is accessed by all threads created to execute the collect_hosts,
display_hosts, and exec_shell functions. It is important to ensure that the writer threads (exe-
cuting the collect_hosts function) do not access the hostlist table simultaneously with the

. reader threads (executing the display_hosts and exec_shell functions)

When the display_hosts function is invoked, it displays all the host names in the hostlist
table. These are the hosts running the shell_svc daemon. The function acquires and releases
the read-write lock before and after it accesses the hostlist table. This is to ensure that the
collect_host threads do not modify the table while reading it.

To make the host listing output separate from the main thread menu display, the
display_hosts function stores the host listing to a temporary file and invokes an xterm to exe-
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cute the view <temp_file> command on = separate window. The window disappears when a
user quits the view command and the temporary file is discarded. The function terminates the
thread with a exit value of 0 if it succeeds, a nonzero value if it fails.

When the exec_shell command is invoked, its input argument is a NULL-terminated
character string that contains a user-defined shell command and a host name. The function
calls the check_host command to make sure that the user-specified host name is in the hostlist
table. If it is not, the thread terminates with a 1 value (failure). On the other hand, if a user-
specified host name is valid, the function calls the exec_host function, which, in turn, creates
an RPC_cls object to connect to the shell_svc daemon on the given host. Furthermore, the
exec_host function calls the execshell RPC function via the RPC_cls object to execute the
user shell command on that host. The exec_host and the exec_shell thread terminate with a
zero value if the remote shell execution is successful or a nonzero value otherwise.

The :nteractive program is made up of the main_shell.C and shell_cls.C files. They are
compiled as follows and the sample output of its execution is shown below. For this example,
the hosts that have the shell_sve daemon installed are fruit and veggie.

% CC -DSYSV4 shell_cls.C main_shell.C -o shell_cls -ithread -Insl
% shell_cls

0: Collect hosts names

1: Display hosts names

2: Execute a command

3: Quit

Selection> 0

0: Collect hosts names

1: Display hosts names

2: Execute a command

3: Quit

Selection> 1

< output shown in a xterm window: O: fruit 1: veggie >

0: Collect hosts names
1: Display hosts names
2: Execute a command
3: Quit

Selection> 2

shell cmd> cal 1995 > foo
host> fruit
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0: Collect hosts names
1: Display hosts names
2: Execute a command
3: Quit

Selection> 3

13.9 Summary

This chapter described multithreaded programming techniques based on the Sun
Microsystems Solaris thread library and the POSIX.I¢ standard. Specifically, both Sun and
POSIX1.c provide a set of thread library functions for users to create and manipulate threads
in their applications. Various synchronization objects like mutex locks, condition variables
and semaphores are also provided for users to synchronize thread access of shared data in the
same process.

Other system support of multithreaded programs include special APIs for modifying
per-thread base signal mask and provide re-entrance versions of major library functions. All
of these thread-specific environment supports are also expected to be available in other plat-
forms that support multithreaded programs.

Multithreaded programming is particularly useful for multiprocessing and object-ori-
ented applications. This is demonstrated in the last section, where a distribution and multi-
threaded interactive program is depicted. This example program provides a framework for
users to create their own applications, making use of any multiprocessing or network comput-
ing resources available on the machines running their applications.
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567

thr_kill 529-530, 536

thr_min_stack 527

THR_NEW_LWP 527

thr_self 528, 536

thr_setconcurrency
531, 534

thr_setprio 531, 534

thr_setspecific 524,
565, 567

thr _sigsetmask 529-
530, 532



thr_susmpend 524, 528
THR_SUSPENDED 527
thr_yield 531, 541
thread semaphore 560-564
thread structure 523-524
thread.h 526, 526-566
mutex_t 543
thread_t 528
throw 58-64.
time 103-104
time.h 103-106
TIMER_ABSTIME 284--286, 287,
290
timer_create 282-283, 285,
288-289
timer_delete 286, 288-289
timer_ destroy 284
timer_getoverrun 288, 290
timer_gettime 283-284, 288,
291
TIMER_MAX 282
TIMER_RELTIME 284
timer_settime 283-286, 287-
289
tiuser.h 399-416
struct netbuf 403
struct t_bind 402
struct t_call 404
struct t_discon 414
struct t_info 400
struct t_uderr 412
struct t_unitdata 409
TLI class 416-434
TNODATA 404-405, 407-408, 411
TNOTSUPPORT 409, 413

touch 136

transport layer interface
368, 395-434

try 58-62

type-safe linkage 8
TLI. See transport layer
interface

U

ualarm 278
UDP 367-368, 400
umask 148 -
unamed pipe 88
unexpected 64
union sigval 283
unistd.h 10-17, 167
UNIX file attributes 134-136
See also stat.h
UNIX process
change attributes 241-
242
overview 208-211
query attributes 238-240
unlink 136, 148, 160-??
user2netname 487
usleep 278 v
USYNC_PROCESS 544, 551, 553,
556-558, 561, 562
USYNC_THREAD 544-547, 551,
556, 561, 575
utime 136, 148, 172-173
utime.h 172
struct utimbuf 172

v

va_arg 107-109

va_end 107-110
va_start 107-109

vfork 213-214

viprintf 111-112
virtual functions 34-36
volatile 2

vsprintf 111

w

W_OK 167

wait 216-220
wait.h 216-218
waitpid 216-220, 27i-272
WEXITSTATUS 217-219
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WIFEXITED 217-219
WIFSIGNALED 217-219
WIFSTOPPED 217-219
WSTOPSIG 217-219
WTERMSIG 217-219
write 143, 148, 154-155

X

X/Open 18

X_OK 167

XDR functions
xdr_bool 453
xdr_char 453
xdr_double 453
xdr_enum 453
xdr_float 453
xdr_int 453
xdr_long 453
xdr_opaque 453
xdr_short 453
xdr_string 453
xdr_u_char 453
xdr_u_int 453
xdr_u_long 453
xdr_u_short 453
xdr_union 453

XDR. See external data

representation
XTI 368

Z

zombie process 214



